
TEACHING WITH PARALLELLA: A FIRST LOOK IN AN

UNDERGRADUATE PARALLEL COMPUTING COURSE *

Suzanne J. Matthews
Department of Electrical Engineering & Computer Science

United States Military Academy
West Point, NY 10996

845-938-5577
suzanne.matthews@usma.edu

ABSTRACT

This paper describes our experience integrating the Parallella, an energy
efficient single board computer (SBC) with 18 cores, into an undergraduate
parallel computing course. The board's small form-factor, high number of
cores and relative cheapness makes it a very attractive option for introducing
students to parallel computing. We describe and reflect on our experiences
using the Parallella board, and offer novel educational materials that will assist
others to incorporate the Parallella into future computing courses.

INTRODUCTION

The ubiquity of multi-core architectures in recent years makes teaching parallel and
distributed computing (PDC) concepts to undergraduates more imperative than ever.
Despite the fact that most laptops, tablets, and smart-phones contain multi-core chips,
computer science undergraduates are still largely exposed to serial languages. The need
for more extensive parallel computing education is underscored with the release of the
ACM/IEEE Computer Science Curricula 2013 (CS2013) [1], which recommends that 15
hours of PDC concepts be included in the typical undergraduate computer science
program. Other efforts, such as the IEEE Curriculum Initiative on Parallel and Distributed
Computing (NSF/IEEE TCPP) [19] and the CSinParallel community [7], are seeking to

* Copyright © 2015 by the Consortium for Computing Sciences in Colleges. Permission to copy
without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the CCSC copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires a
fee and/or specific permission.

18

CCSC: Eastern Conference

define the most important PDC topics to include in a computer science curriculum, and
provide relevant modules and educational resources for undergraduate computing
courses.

Even before the release of CS2013, many educators were looking to establish best
practices for teaching PDC concepts in the classroom. Most researchers advocate using
modules and other techniques that promote “hands on experiential learning” [9].
Modules can target specific courses in the CS curriculum [12], or be concentrated into
a breadth-first exposure to parallel topics in a computing elective [21]. In all cases,
researchers espouse the importance of demonstrating application speedup [8,9,12,21],
presenting engaging modules [8,9,21], and recommend a high level of interactivity in the
classroom [8, 9].

One way to promote “hands on” learning in a parallel computing course is to give
each student their own multiprocessor. The shrinking nature of transistors and increasing
cheapness of commodity hardware has enabled self-contained parallel architectures to
enter the classroom. The earliest examples include MicroWulf [5] and LittleFe [18].
Introduced in 2008, MicroWulf provides 26.25 GFlops of performance for $2,470,
making it the first Beowulf cluster to break the $100/Gflop barrier [5]. LittleFe is a
six-node Beowulf cluster, with each node consisting of a multi-core processor. Modern
versions of the cluster support GPGPUs [18]. The $3,000 cluster takes students around
ten hours to assemble, and has been used successfully and extensively for numerous
workshops [18]. Recent years have seen the rise of increasingly small single board
computer (SBC) architectures, including the Raspberry Pi [20], Odroid [14], and NVidia
Jetson [13] boards. Efforts from the past year have used the Raspberry Pi single board
computer successfully in an undergraduate architecture course [22], and for teaching
undergraduates Java programming [6].

In this paper, we discuss the integration of the Parallella board (an 18-core,
credit-card sized computer) in an upper-level, undergraduate parallel computing course.
We chose the Parallella for its relative cheapness, small form-factor, and marketed ease
of programmability. We present an overview of the Parallella and its unique architectural
features, discuss how we integrate the Parallella into our parallel computing course, share
novel and valuable Parallella educational materials, and submit a collection of
observations and suggestions for future use.

ABOUT THE PARALLELLA

Introduced via a KickStarter campaign in 2013, the Parallella board was advertised
as a platform enabling “parallel computing for everyone”. Each board has a dual-core
667MHz ARM processor, 1 GB of RAM, Gigabit Ethernet, and a 1GHz 16core Epiphany
co-processor, with 32KB of local memory available to each Epiphany core (e-core), and
total peak performance of 32 GFlops [2]. At $99.00, the level of performance is hard to
beat, and relatively inexpensive for individual use in the classroom. A more expensive
18-core Desktop version ($145.00) enables users to connect the Parallella to a monitor.
The Parallella uses a microSD card to house the operating system and user files, making

19

JCSC 31, 3 (January 2016)

it easy to swap out the image for others containing specialized learning modules. Lastly,
the board has a definite “cool” factor. Upon seeing the Parallella, many students in our
department were eager to learn more.

The Epiphany co-processor is of particular interest. Co-processors and other
energy-efficient hardware accelerators like GPUs are gaining increased popularity in the
supercomputing world, as power becomes the dominant limiting factor to building faster
machines. Most famously, the Tianhe 2 [23] supercomputer has remained at the top of
the Top500 fastest supercomputer list, largely due to its incorporation of the Intel Xeon
Phi co-processor, which vastly increases its computational capabilities without
drastically increasing power requirements. Coprocessors like the Epiphany and Intel
Xeon Phi have a multiple instruction multiple data (MIMD) architecture, similar to
general-purpose CPUs. The MIMD architecture makes the co-processor more amenable
to workflows that are difficult to implement on GPUs, which classically have single
instruction multiple data (SIMD) architecture. Due to the co-processor's architectural
similarities to the CPU, it is also argued that it is easier to program than a GPU. These
reasons (along with an advertised slick developer environment for Epiphany) led us to
adopt the board for the course.

COURSE OVERVIEW

Our parallel computing course was offered as an elective available to primarily
seniors. The course consisted of six modules designed to give students a breadth-first
exposure to parallel computing, similar to the implementation [21] at Sonoma College.
Unlike the course at Sonoma, we covered POSIX threads (Pthreads), OpenMP,
Epiphany, and MPI as part of our four parallel modules targeting shared memory,
co-processor, and distributed system architectures.

For each module, students completed a programming project where they were
provided with (or asked to write) a serial solution for a given application in C. Students
then parallelized the application using one to two parallel libraries, and conducted a
performance benchmarking study. Projects were supplemented with topic papers
covering assigned articles that discussed recent advancements in parallel computing.
Given the intensity of the assignments, the course had no exams. The course was well
received, with students enjoying the combination of programming projects and topic
papers.

Purchased Materials

Since the course was a pilot elective targeting a small population of students, our
department purchased the necessary Parallella boards and accessories. Table 1 outlines
the cost per student for the purchased components. The cost of peripherals (e.g. monitor,
keyboard and mouse) is not included, as students either owned or had classroom access
to the required hardware.

20

CCSC: Eastern Conference

Table 1: Cost breakdown per student for Parallella board and required accessories.

Item Cost

16-core Parallella Desktop Computer
w/power supply and heatsink

$149.00

IoGear 4-port powered USB hub $ 22.93

8GB MicroSD card w/Adapter $ 6.60

MicroUSB to USB (F) Cable $ 5.99

MicroHDMI to HDMI (F) Cable $ 2.96

Crossover Cable $ 3.99

Total $191.47

We chose to purchase the more expensive 16-core Parallella Desktop computer
because we assumed our students would prefer a more familiar desktoplike environment.
Unlike the $99.00 Microserver, students can choose to work in the desktop environment
or SSH into their boards remotely. We note that this type of access comes at non-trivial
cost. The first four accessories (roughly $40.00) are required to enable students to
connect the Parallella board to a HDMI monitor, and USB keyboard and mouse. The
crossover cable is required for both the Parallella Desktop and Microserver editions. As
a result, the “true” cost of the 16-core Parallella Desktop is closer to $190, roughly
$10.60 per core.

Parallella Specific Mini-modules and Materials

The students were initially required to use their Parallella boards for their first four
programming projects, with the last (MPI-specific) project to be completed on a campus
high performance computing cluster. We created additional educational materials and
“mini-modules” to aid our students in learning about the Parallella and Epiphany
architecture. Each mini-module was designed to fit in a single lecture hour (55 minutes).
We describe the mini-modules and materials below:

 • Parallella Setup mini-module: This mini-module was designed to allow students to
get their Parallella boards up and running within an hour of opening the box. Users
on the Parallella forums commonly report difficulties in getting their Parallella
boards to work, partially due to the lack of clarity in the provided documentation.
We created custom images based on those available from the Parallella website, and
provide instructions for creating an SD card using a Windows laptop. We also
included trouble-shooting guidelines. The mini-module is freely available at:
http://suzannejmatthews.github.io/2015/05/29/setting-up-your-parallella/

21

JCSC 31, 3 (January 2016)

 • Custom Parallella Case: Also included in the above mini-module are instructions
for assembling a custom-designed, 3-D printed case for the Parallella. While the
Kickstarter campaign gave original backers a plastic case for the Parallella, the case
is unavailable for purchase. Our case design allows for passive cooling, and enables
multiple boards to be connected either horizontally or vertically. The STL files for
the case are available at: http://www.thingiverse.com/thing:892684.

 • Connecting to Parallella via SSH mini-module: Our students often used SSH to
complete assignments and transfer files between their Parallella boards and laptops.
This mini-module describes how to use Putty and the PSFTP clients to remotely
access and transfer files between a Parallella board and a Windows system. These
techniques also prepared our students to connect to the campus HPC cluster, as
cluster access from Windows requires the same set of software. This mini-module
is freely available at:
http://suzannejmatthews.github.io/2015/05/30/setting-up-ssh-forparallella/.

 • Creating a Parallella Cluster mini-module: As we made the transition between the
Parallella and MPI modules, we had a mini-module where students networked their
Parallella boards together to a Gigabit Ethernet switch. The plan was to run the John
the Ripper (JtR) password cracker in parallel by combining a JtR program written
for the Epiphany architecture with MPI. Pre-flashed master node images with MPI
and the necessary files were provided for this exercise. Our mini-module was
adapted from the Southampton [10] tutorial for creating a Raspberry Pi cluster. The
minimodule is available at:
http://suzannejmatthews.github.io/2015/06/15/parallella-cluster/

 • Lecture materials for the Epiphany Module: To facilitate our students' ability to
complete the Epiphany programming project, we created lesson materials that
discuss the Epiphany architecture and the most salient aspects of the Epiphany
manuals. Our lessons include walk–throughs of basic Epiphany programs, and
simple examples demonstrating how to deploy applications to the Epiphany
architecture. Our students reported these lessons were critical for their
understanding, since they had significant trouble understanding the Epiphany
manuals on their own. The lecture materials are available at:
http://suzannejmatthews.github.io/2015/05/31/epiphany/.

OBSERVATIONS

When first introduced to the Parallella, students thought the boards were very
“cool”, and were excited at the prospect of programming them. They really enjoyed the
Parallella setup mini-module held at the beginning of the course and were very motivated
to learn more. Unfortunately, their enthusiasm for the boards began to wane in the weeks
that followed, largely due to issues they had connecting to the board and the quality of
provided Epiphany documentation and examples.

22

CCSC: Eastern Conference

Students Preferred SSH to Desktop Environment

The Parallella Desktop edition requires a HDMI monitor to display the desktop
environment. While the classroom monitors had native HDMI support, the monitors our
students personally owned did not. While this was a source of initial frustration, the
students quickly adapted to connecting to the boards via SSH.

Surprisingly, students soon preferred to connect to the boards via SSH inclass
instead of using the provided monitors, keyboards and mice. When queried for the
reason, students said that they disliked the several minutes of setup time required at the
beginning of class to connect the board to the provided peripherals, and at the time
required at the end of class to disconnect everything again. This was especially
inconvenient for students who had a long distance to travel between classes. The majority
of the students stopped using the desktop interface six weeks into the semester, instead
preferring to use SSH to connect to the boards.

Network Policies and (Lack of) Internet Connectivity a Major Obstacle

Our university network policies provided additional challenges. The Parallella
boards were prohibited from being connected to the campus network. To get around this,
we used static IP addresses and crossover cables to allow students to SSH into the boards
from their laptops. While this was set up through an alternative configuration of their
network adapter in Windows, it interfered with their ability to access the Internet while
connected to their Parallella boards. This problem, unfortunately, was not resolved by
the end of the semester.

Our university's wireless network bandwidth also prevented us from finishing the
Parallella cluster mini-module in the allotted hour block. While the 2GB compressed
cluster image requires only ten minutes to download over Ethernet, it took over an hour
when students attempted to simultaneously download the file over the classroom's
wireless network. The instructor instead demoed the JtR application while students
fruitlessly waited for their downloads to complete.

While issues with Internet connectivity and campus network policy were a major
source of frustration, we note that many of these observed issues are not unique to the
Parallella board. Recent efforts [22] to incorporate the Raspberry Pi into the classroom
have encountered similar difficulties with university IT policies and connecting students
to the device. As new strategies are developed to integrate SBCs into classrooms, these
issues will need to be taken into consideration.

Epiphany Documentation and Examples Need Improvement

There is a significant learning curve required for undergraduates attempting to
program the Epiphany architecture. While the Parallella website advertises a slick
Eclipse-based integrated development environment, it is currently non-functional, and too
large to be run on the Parallella board. Undeterred, we used the Epiphany and Parallella

23

JCSC 31, 3 (January 2016)

examples [15, 16] provided on GitHub and the manuals for the Epiphany Architecture
[3] and Software Development Kit (SDK) [4] to figure out how to write programs for the
Epiphany architecture.

The two Epiphany manuals together constitute 300 pages of reading. Most students
attempted to skim the manuals, but were largely unsuccessful at finding needed
information. Our students' relative inexperience at reading large software manuals is
certainly a major reason for this. That said, the examples presented in the manuals are
mainly designed for reference use, and contain an insufficient amount of detail to enable
students to start programming the architecture quickly. Students instead relied heavily on
the instructor-produced Epiphany slides to learn the SDK and complete their projects.

Lastly, the provided examples for executing simple programs in parallel on the
Epiphany chip require work to be easily understandable by undergraduates. The
programming model for the Epiphany chip is very similar to that of GPUs. The
programmer is required to write a “host” and a “device” program. The “host” program
is responsible for transferring data to and from the Epiphany chip (the device), and
deploying the “device” program on the chip. The “device” program contains code that
is run on each Epiphany core (e-core), and tends to be much simpler than the “host”
program. The Epiphany repository [15] on GitHub surprisingly lacks many
representative small examples. As of this time of writing, we have identified only four:
eprime, matmul, dotproduct, and hello-world. While the Parallella repository [16] has
several mature demo applications that use the Epiphany architecture, they lack sufficient
documentation and tend to be too large for students new to the architecture to easily
comprehend.

Due to the difficulties in programming the Epiphany chip, students wrote most of
their parallel programs on the dual-core ARM chip. This included all the programs they
wrote in Pthreads and OpenMP. We opened up remote access to a Linux lab containing
multi-core processors to enable students to perform more meaningful benchmarking
studies for their Pthreads and OpenMP projects. Students reported the Epiphany project
(a prime generator requiring code similar to the dotproduct example) to be the hardest
they completed in the course. At the end of the course, a few students expressed a wish
that we had covered the CUDA architecture instead.

CONCLUSIONS

The Parallella board is certainly a modern marvel of computer architecture, and has
a lot a promise to positively impact parallel computing education. The fully developed
Epiphany applications available through GitHub are very impressive and really show off
the power of the Epiphany chip. However, our experience underscores that the Parallella
board is still in early development.

In particular, the documentation and provided examples require significant revision
to be accessible to undergraduates. By itself, the dual-core ARM chip is very limiting in
the context of a parallel computing course. Competitors to the Parallella, such as the

24

CCSC: Eastern Conference

Raspberry Pi 2, Odroid and Jetson boards all have quad-core ARM chips. To remain
competitive, we suggest that the Parallella developers consider upgrading the ARM chip
to a quad-core alternative.

We also note that the Epiphany chip currently does not appear to be significantly
easier to program than a CUDA chip, as both architectures require a “host” and “device”
program and knowledge of custom SDKs. Epiphany developers need to make a real
argument on why students should use the Epiphany architecture over CUDA at this
juncture, especially given the popularity of CUDA and the rich amount of available
literature for programming the CUDA architecture. The biggest question we face going
forward is whether to swap out the Epiphany module with a CUDA module in future
iterations. The NVidia Jetson, consisting of a quadcore ARM chip, 192 CUDA cores and
priced at $192.00, represents a fierce competitor for the Parallella.

In retrospect, our incorporation of the Parallella board in our undergraduate parallel
computing course was premature. We note however that there is a lot of exciting ongoing
work being done to improve the programmability of the Epiphany chip, most recently
the March 2015 release of the OMPi b2 OpenMP compiler [11]. Other ongoing efforts
include adding support [17] for languages such as MPI, OpenCL, Erlang and BASIC for
the Epiphany architecture. We anticipate our educational materials and experiences to be
valuable additions to the Parallella and computer science education communities, and will
enable others to explore incorporating the Parallella in their own courses.

While the Parallella board is still clearly going through growing pains experienced
by all new architectures, we believe SBCs like it have a clear place in future computing
courses. The increased availability of free materials related to parallel computing may
make purchasing future textbooks largely unnecessary, enabling students to instead
purchase a single board computer as part of required course materials. Strategies certainly
need to be developed to resolve networking issues, especially as it relates to university
IT policies. However, we believe that personalized parallel computing is a trend that
should be encouraged, and that the Parallella board is a promising candidate for future
use.

DISCLAIMER

The opinions in this paper are those of the author and do not necessarily reflect the
opinions of the U.S. Military Academy, or the U.S. Army.

REFERENCES

[1] ACM/IEEE-CS Joint Task Force on Computing Curricula. 2013. Computer
Science Curricula 2013. ACM Press and IEEE Computer Society Press.

[2] Adapteva Inc. E16G301 16-core microprocessor datasheet, 2013,
http://www.adapteva.com/docs/e16g301_datasheet.pdf, retrieved February 2015.

25

JCSC 31, 3 (January 2016)

[3] Adapteva, Inc. Epiphany Architecture Reference, 2013,
http://www.adapteva.com/docs/epiphany_arch_ref.pdf, retrieved February 2015.

[4] Adapteva, Inc. Epiphany SDK Reference, 2013,
http://adapteva.com/docs/epiphany_sdk_ref.pdf, retrieved February 2015.

[5] Adams J.C, Brom T.H, Microwulf: a beowulf cluster for every desk, Proceedings
of the 39th SIGCSE technical symposium on Computer science education,
121-125, 2008.

[6] Altadmri A., Brown N.C.C, Kölling M., Using BlueJ to Code Java on the
Raspberry Pi (Demonstration Session), Proceedings of the 46th ACM Technical
Symposium on Computer Science Education, 2015.

[7] Brown, R., Shoop E., CSinParallel and synergy for rapid incremental addition of
PDC into CS curricula, IEEE 26th International Parallel and Distributed
Processing Symposium Workshops & PhD Forum, 1329-1334, 2012.

[8] Brown R., Shoop E., Adams J., Clifton C., Gardner M., Haupt M., Hinsbeeck P,
Strategies for preparing computer science students for the multicore world,
Proceedings of the 2010 ITiCSE working group reports, 97-115, 2010.

[9] Chesebrough R.A., Turner I., Parallel computing: at the interface of high school
and industry, Proceedings of the 41st ACM technical symposium on Computer
science education, 280-284, 2010.

[10] Cox, S., Steps to make Raspberry Pi Supercomputer, 2013,
https://www.southampton.ac.uk/~sjc/raspberrypi/pi_supercomputer_southampto
n_web.pdf, retrieved October 2014.

[11] Dimakopoulos, V.V., Hadjidoukas P.E., et. al., New version (b2) of OMPi for
Parallella, 2015.
http://paragroup.cs.uoi.gr/wpsite/news-posts/new-version-b2-ofompi-for-parallell
a/, retrieved May 2015.

[12] Ernst D.J., Stevenson D.E, Concurrent CS: preparing students for a multicore
world. SIGCSE Bulletin, 40, (3), 230-234, 2008.

[13] Nvidia. Nvidia Jetson TK1 embedded development kit: the world's first
embedded supercomputer.
http://www.nvidia.com/object/jetson-tk1-embeddeddev-kit.html, retrieved May
2015.

[14] Odroid, Odroid, http://www.hardkernel.com/main/main.php, 2014, retrieved May
2015.

[15] Olafsson, A., Jeppsson O. GitHub: Simple examples showing how to program
the Epiphany. https://github.com/adapteva/epiphany-examples, retrieved May
2015.

26

CCSC: Eastern Conference

[16] Olafsson, A., Back, A., Jeppson, O. GitHub: Community created Parallella
examples. https://github.com/parallella/parallella-examples, retrieved May 2015.

[17] Olafsson, A., How the @#$% do I program the Parallella?, 2015,
https://www.parallella.org/2015/05/25/how-the-do-i-program-the-parallella/,
retrieved May 2015.

[18] Peck C., LittleFe: parallel and distributed education on the move, Journal of
Computing Sciences in Colleges, 26, (1), 16-22. 2010.

[19] Prasad, S.K., Chtchelkanova A.Y, Das S.K., Dehne F., Gouda M.G., Gupta A.,
Jaja J. et al., NSF/IEEE-TCPP curriculum initiative on parallel and distributed
computing: core topics for undergraduates, SIGCSE, 11, 617-618, 2011.

[20] Raspberry Pi. Teach, Learn, and Make with the Raspberry Pi.
https://www.raspberrypi.org/, retrieved May 2015.

[21] Rivoire S., A breadth-first course in multicore and manycore programming,
Proceedings of the 41st ACM technical symposium on Computer science
education, 214-218, 2010.

[22] Tarnoff D., Integrating the arm-based Raspberry Pi into an architecture course,
Journal of Computing Sciences in Colleges, 30, (5), 67-73, 2015.

[23] Top 500. Tianhe-2 (Milkyway 2):No. 1 system since June 2013.
http://www.top500.org/featured/systems/tianhe-2/, retrieved May 2015.

27

