
Nifty Assignments
Nick Parlante, Julie Zelenski

(moderators)
Stanford University

nick.parlante@cs.stanford.edu
zelenski@cs.stanford.edu

Mark Sherriff
Luther Tychonievich

Ryan Layer

University of Virginia

(mark) sherriff@virginia.edu
(luther) lat7h@virginia.edu
(ryan) rl6sf@virginia.edu

Peter-Michael Osera
University of Pennsylvania

 posera@cis.upenn.edu

Suzanne J. Matthews
United States Military Academy

suzanne.matthews@usma.edu

David R Raymond
United States Military Academy
david.raymond@usma.edu

Stuart Reges
University of Washington

reges@uw.edu

Marty Stepp
Stanford University

stepp@cs.stanford.edu

Allison Obourn
University of Washington

aeobourn@cs.washington.edu

Josh Hug
University of California, Berkeley

hug@cs.berkeley.edu

Categories and Subject Descriptors
K.3.0 [Computers and Education]: General

General Terms
Algorithms, Design, Languages

Keywords
Education; assignments; homeworks; examples; repository;
library; nifty; pedagogy

Abstract
A great CS assignment is a delight to all, but the path to one can
be most roundabout. Many CS students have had their characters
built up on assignments that worked better as an idea than as an
actual assignment. Assignments are hard to come up with, yet
they are the key to student learning. The Nifty Assignments
special session is all about promoting and sharing the ideas and
ready-to-use materials of successful assignments.

Each presenter will introduce their assignment, give a quick
demo, and describe its niche in the curriculum and its strengths
and weaknesses. The presentations (and the descriptions below)
merely introduce each assignment. A key part of Nifty
Assignments is the mundane but vital role of distributing the
materials – handouts, data files, starter code – that make each
assignment ready to adopt. The Nifty Assignments home page,
http://nifty.stanford.edu, gathers all the assignments and makes
them and their support materials freely available.

If you have an assignment that works well and would be of
interest to the CSE community, please consider applying to
present at Nifty Assignments. See the nifty.stanford.edu home
page for more information.

Counting Squares (CS0/CS1) - Mark Sherriff,
Luther Tychonievich, and Ryan Layer

This intro assignment is used to help introductory students think
about the process of creating a basic algorithm, with a particular
emphasis on generality and efficiency. Students try to think of
different ways for a robot to count all the squares on a grid using
a very basic set of commands. Code is provided in both Python
and Java to allow them to test out their solutions; we have also
had success using it "unplugged" on paper. We have found that
this assignment is a great introduction to computer science and
programming in general. It’s a relatively easy problem to start
with if you consider a square grid, but the complexity can quickly
escalate as the students compete for the fastest solution
(efficiency) while considering grids with missing squares or
irregular shapes (generality). This assignment can be used as a
quick glimpse into AI for early classes as well. Counting Squares
has been used with great success with both our introductory
course as a lab session and as a group activity in lecture. We have
also used it with middle school students in a camp setting.

Speed Reader (CS1) - Peter-Michael Osera
Many people, students especially, wish they could read faster. In
addition to the various speed reading courses out there today, we
can employ software to help us learn to read faster. Most of these
programs employ Rapid Serial Visual Presentation (RSVP) to
help you focus your eyes and eliminate sub-vocalization, allowing
you to read at more than twice the rate of the average person.
However, are these programs truly effective? Are we able to read
at this rate and still comprehend what we are reading?

Luckily, speed readers are simple programs that we can have our
students implement in a CS1 course and run experiments over to
see for themselves! In this assignment, students build a prototype
speed reader that reads in plain text files and displays them in the
RSVP style. They are then charged to run small usability studies
on their friends and families to determine if RSVP is effective.

The speed reader program has highly flexible requirements. At its
core, students practice the basics of file IO, string tokenization,
and animation. Depending on the instructor's preference, students
can implement a curses-style console-based speed reader or a
fancier speed reader in a GUI. The assignment is also extensible
in many ways to give it as much depth as the instructor desires.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the Owner/Author. Copyright is held by the owner/author(s).
SIGCSE '15, March 4-7, 2015, Kansas City, MO, USA.
ACM 978-1-4503-2966-8/15/03.
http://dx.doi.org/10.1145/2676723.2677327

673

Geo Location (CS1) - Stuart Reges
This assignment involves writing a simple class that is a variation
of another class. The CS education community has struggled to
find simple class examples that don't seem contrived or confusing.
The most successful examples involve some form of scaffolding
where the instructor provides a lot of supporting code. This
assignment also involves scaffolding, but the interface is very
simple. The code calls a method that accesses the Google Maps
API to get information about a location given its coordinates
(latitude and longitude).

Students are shown the implementation of a GeoLocation class
that keeps track of information about a location. Students
intuitively understand that a location involves two pieces of
information: a latitude and a longitude. It also has the nice
property that these values are often expressed in two different
ways: as three integers (hours, minutes, seconds) and as a single
real number, which means that it makes sense to have two
different constructors. It also has a nontrivial bit of behavior that
you would not want to make others implement. Instead of
something like the boring but classic Fahrenheit to Centigrade
conversion, this class includes a method that finds the distance
between two locations on Earth, which is not a simple calculation.

In the assignment, students first practice being a client of the
GeoLocation class and then they write a variation of the class that
keeps track of additional information about the location (it's
name, address, and associated tags). Our observation is that
students make many classic mistakes as they learn about objects
in this assignment. For example, instead of storing their own
GeoLocation object that computes the distance between two
locations, they often copy the code from the GeoLocation class.
That kind of confusion is useful to clear up early so that we can
point out that one object often delgates some task to another
object to complete.

The nifty part is the ability to access the Google Maps API. This
makes the assignment more compelling. It also allows for many
extensions to the basic assignment. For example, we wanted to
have a large amount of data of places of interest near the
University of Washington. This wasn't easy to get directly from
Google, so we created our own through crowdsourcing. Each
student submitted entries for a massive data file that we compiled.

Packet Sniffing in Python (CS1) – Suzanne J.
Matthews and David R. Raymond
This lab highlights the real-world dangers of packet-sniffing by
enabling students to analyze a packet capture (PCAP) file using
the Scapy package in Python. After a quick overview on how
information is transferred on wired and wireless networks, we
discuss the ethics and legality of packet sniffing unsecured
wireless networks (like those at coffee shops, airports, and hotels).
During the main portion of the lab, students write Python code to
extract and inspect packets contained in a PCAP file purportedly
collected from four individuals surfing the web using a coffee
shop’s unsecured wireless network. The PCAP file is in fact
artificial; it was created on our sandboxed networks. The end goal
is for students to collect as much information as possible (e.g.
names, e-mail addresses, passwords, occupations, e-mail contents)
about the individuals at the coffee shop. Most students are
shocked that they can read other people’s e-mails and learn what
websites they visited. The exercise quickly underscores the need
for packet encryption, and promotes discussion on how students
can best protect themselves. The lab can easily be tailored as a
homework assignment or project. We assume students have

covered the basics of sequence, selection and iteration in the
Python language, and are knowledgeable about Python lists and
dictionaries.

Melody Player (CS1/CS2) - Allison Obourn
and Marty Stepp
This assignment involves writing a class to play music. Students
are given files containing the notes of songs in a simple text
format. Part of what makes the data interesting is that most songs
have repeated sections commonly called a refrain or chorus.
Students implement a class to store notes and rests in a song.
Repeated sections must be represented without duplication. They
write methods to perform various operations such as playing the
song, changing its octave/pitch or tempo, reversing it, etc.
Students are given a library for playing individual tones. They can
be provided a UI or can write it themselves.

We have given this assignment using arrays/lists and using
stacks/queues, so it can fit in mid/late CS1 or early CS2. The
assignment is extensible and makes it simple to adjust the list of
operations that the students will implement; for example,
advanced students may implement playback from a given time
index.

The data is interesting without being "big" data, so it is simple to
visualize and debug. Students understand the data and understand
what they are expected to do, while getting good practice of linear
data structures. Also, students often like multimedia content, but
many of such assignments focus on graphics. It's fun to hear the
songs play and to perform manipulations on familiar melodies.
Students also enjoy writing their own custom songs.

Seam Carving: A Content Aware Image
Resizing Algorithm (CS2) - Josh Hug
Given an image, it is sometimes desirable to scale that image in
only one dimension, for example when moving from a 16:9 aspect
ratio to a 4:3 aspect ratio. The easiest approach is to simply crop
the image, or with a bit more work, to rescale the image. However
these approaches either remove image content or make everything
in the image look skinnier or fatter than it should.

Seam carving is a simple and elegant image resizing technique
published in 2007 by Shai Avidan and Ariel Shamir that avoids
these flaws by rescaling in a content-aware manner. Specifically,
seam carving reduces the size of an image by one pixel of height
(or with) at a time by removing ‘seams’, which are contiguous
paths of pixels with minimum total energy.

Despite being a relatively new published result, the algorithm is
simple to explain and implement, and the quality of the results
can be quite impressive for the right kinds of images.
Furthermore, when applied to the wrong sorts of images (like the
student's own faces), the results can be both horrifying and
hilarious.

The assignment can be cast as a difficult challenge involving
nested for loops over a two dimensional array, as an example of
dynamic programming, or as a graph traversal problem on a
directed acyclic graph. There are also opportunities for
exploration, including finding ways to expand the size of images,
remove specific regions of images, and more.

674

