Teaching PDC in the Time of COVID:
Hands-on Materials for Remote Learning

Joel C. Adams
Calvin University
Grand Rapids, MI, USA
adams @calvin.edu

Richard Brown
St. Olaf College
Northfield, MN, USA
rab@stolaf.edu

Abstract—In response to shifts in the hardware foundations
of computing, parallel and distributed computing (PDC) is now
a key piece of the core CS curriculum. For CS educators,
the COVID-19 pandemic and the resulting switch to remote-
learning add new challenges to the tasks of helping learners
understand abstract PDC concepts and equipping them with
hands-on practical skills. This paper presents several novel
teaching materials for teaching PDC remotely, including: (i)
using a Runestone Interactive “virtual” handout to learn how
to run OpenMP multithreaded programs on a Raspberry Pi,
and (ii) using Google Colab and Jupyter notebooks to run
mpi4py instances on remote systems and thus learn about MPI
distributed multiprocessing. The authors piloted these strategies
during a multi-day faculty development workshop on teaching
PDC. Assessment data indicates that the materials greatly aided
professional development and preparedness to teach PDC.

Index Terms—Raspberry Pi, Runestone Interactive, Google
Colab, Remote Education, Parallel & Distributed Computing,
MPI, OpenMP, Python

I. INTRODUCTION

Prior to 2006, most computers were uniprocessors, meaning
they had central processing units (CPUs) that could only
execute one machine instruction at a time. Virtually all of
today’s computers are parallel multiprocessors, meaning their
multicore CPUs can execute multiple machine instructions
simultaneously. Over roughly the same time span, cloud
computing services have become available. These allow a
computation to be distributed between a local machine and
one or more remote “in the cloud” machines.

To take advantage of these seismic shifts in modern comput-
ing’s hardware foundations, computer science educators need
to be teaching their students about parallel and distributed
computing (PDC) to prepare them for careers in modern
software development.

Accordingly, the CS curriculum recommendations from the
IEEE Technical Committee on Parallel Computing (TCPP)
recommend that every CS student learn about PDC [1], and
the ACM/IEEE CS 2013 report added a new PD knowledge
area to the CS core curriculum [2]. Likewise, the Accreditation
Board for Engineering and Technology (ABET) now requires
accredited CS programs to demonstrate that all of their stu-
dents learn about PDC.

National Science Foundation DUE-1822480/1822486/1855761

suzanne.matthews @ westpoint.edu

Suzanne J. Matthews
U.S. Military Academy
West Point, NY, USA

Elizabeth Shoop

Macalester College

St. Paul, MN, USA
shoop@macalester.edu

One way to expose every CS major to PDC is to inject
PDC topics into existing core CS courses [3]-[7]. As exam-
ples: a Computer Organization course should cover multicore
architectures [8]; an Algorithms course could include parallel
sorting algorithms; a Programming Languages course can in-
clude coverage of the distributed computing message-passing
primitives in languages such as Scala or Erlang; and so on.
Using this approach (i) students learn about PDC topics as they
fit naturally within the context of existing courses; (ii) they
acquire hands-on PDC skills throughout the CS curriculum;
(iii) PDC topics can be introduced early and revisited later in
greater depth, using a “spiral” pedagogy [9]-[12]; and (iv) no
new courses need to be added to the crowded CS curriculum.

Teaching PDC is challenging under ordinary circumstances;
the need to teach remotely increases the difficulty further by
requiring that all learning activities occur online, potentially
asynchronously. These issues were heightened during the
COVID-19 pandemic of 2020-2021, when the need for free,
high-quality, interactive, remotely accessible PDC materials
became evident. The authors identified the following high-
level goals for teaching PDC in a remote environment:

Goal 1: To provide effective conceptual and hands-
on learning about multicore parallel computing.

Goal 2: To provide effective conceptual and hands-
on learning about distributed parallel computing.

Goal 3: To identify what types of educational PDC
experiences are especially useful to learners.

To enable educators to achieve the above goals, we devel-
oped a series of novel teaching materials [13]-[16] that allow
instructors to introduce multicore and distributed computing
concepts in a remote environment. The materials are freely
available, and enable educators to quickly inject multicore and
distributed computing concepts into existing courses, without
having to develop additional materials themselves. We piloted
the use of these materials at a virtual summer workshop
attended by 22 faculty interested in teach PDC. Preliminary
assessment suggests that they are an engaging way of learning
about PDC in a remote environment.

The rest of this paper presents related background work, an
overview of the materials we developed, an initial assessment
of these materials, lessons learned, and conclusions.

II. BACKGROUND AND RELATED WORK

Software. Two popular libraries for PDC are OpenMP for
shared memory on multicore machines, which is built into
nearly all modern C/C++ compilers, and the Message Passing
Interface (MPI) for distributed C/C++ computations on a
multicore machine or Beowulf cluster. Using patternlets [17]
and scaffolding code, OpenMP and MPI make it relatively easy
to introduce PDC in courses that use C/C++. For Python-based
courses, the mpi4py library [18] provides a Python-based MPI
API, and for Java-based courses, the OpenMPI distribution
[19] provides a Java-based MPI API for teaching message-
based distributed computing.

Patternlets for PDC. Software design patterns are gen-
eral, reusable solutions for commonly occurring programming
problems, emerging from decades of experience of industry
professionals. Design patterns for object oriented software
were introduced in 1993 [20] and were popularized by the
book by the same authors [21]. Subsequently, others identified
design patterns for parallel programs [22], [23]. In particular,
the OPL patterns project [24] led by Kreutzer (Berkeley)
and Mattson (Intel) provides a hierarchically-structured, com-
prehensive organization of parallel patterns plus a problem-
solving methodology. Patterns in PDC programming represent
an opportunity to teach “parallel thinking” to students, i.e.,
time-tested PDC problem-solving practices based on decades
of accumulated wisdom of industry professionals.

In 2015, Adams introduced patternlets as very short exam-
ple PDC programs (e.g., OpenMP, MPI, or pthreads), each
illustrating a specific parallel programming pattern [17]. The
brevity of the code and the hands-on experience of running
that code themselves gives even introductory students an
accessible start at learning parallel thinking through patterns.
The students gain a rapid initial understanding of key program-
ming patterns, which have proven essential for effective PDC
programming competence. The materials presented in this
paper use patternlets to introduce key multicore and distributed
computing concepts.

Single Board Computers as Manipulatives. Mathematics
education researchers have produced extensive evidence about
pedagogical tools known as manipulatives [25]-[28]. These
are concrete objects that students can grasp in their hands,
such as Base-10 Blocks, fraction strips, and interlocking cubes,
which can lead them to effectively use mathematical symbols
[29]. This idea dates back to Papert, who described manipu-
latives as “objects-to-think-with” [30]. Mathematics education
research has shown this approach to be effective in helping
students grasp abstract mathematical concepts, including al-
gebra [31], fractions and ratios [27], and computation and
problem solving [26], [28], [32]. Other researchers note that
manipulatives make learning enjoyable and fun, increasing
learner motivation [28], [33].

Inspired by this precedent, we view the Raspberry Pi [34]
and similar single-board computers (SBCs) as manipulatives
for CS students to learn about PDC. More precisely, a SBC
allows students to see and touch system components such as

the CPU, GPU, memory, network connections, and so on, and
students can connect multiple SBCs to form their own Beowulf
cluster [35]. As a tangible device, an SBC can help CS students
progress from concrete experience to visual representations of
abstract concepts (e.g., figures and diagrams), and finally arrive
at a deeper understanding of PDC abstractions.

The Raspberry Pi SBC was introduced in 2012 as a learning
platform for students and hobbyists. Raspberry Pi clusters soon
followed [36]. The first multicore Raspberry Pi was introduced
in 2015, although other multicore SBCs had been used pre-
viously in CS education, including the ODROID SBCs used
by Toth [35], and the Parallella SBC used by Matthews [37].
With suitable software configuration, the Raspberry Pi serves
as the basis for an inexpensive kit (described in Section III A)
that utilizes a laptop for monitor, keyboard, and mouse.

Online interactive computational platforms. Originally
used by researchers to share Python code and results of
analyses, iPython and its successor Jupyter [38], [39] are now
being used in education [40], [41]. These notebook systems
can be used to provide online interactive learning documents,
in which students can read expository text and then run
computations, which they can then modify and run again.
Recently, researchers have created environments for teaching
PDC that use Jupyter notebooks as GUI interfaces to connect
to back-end compute servers, improving on the traditional
terminal plus command-line interface to a compute server [42].

A web-only variant of Jupyter notebooks called Google
Colab [43] extends this concept to the browser, also adding
Google-doc features such as sharing and commenting. Unlike
Jupyter notebooks, the Colab system does not require back-
end server setup or front-end notebook software setup. One
of the contributions of this paper is our discovery that these
notebooks can be used to demonstrate MPI programming using
mpidpy, which we describe in section III-B.

Besides notebook systems such as Jupyter, online interactive
textbook platforms have emerged for CS in recent years. One
of these is Runestone, which debuted in 2014 with a CS1
Python textbook [44]. Runestone Interactive now provides
numerous textbooks for CS courses at all undergraduate levels,
with enhanced learning features such as interactive activities
and exercises. Runestone also offers teaching support such
as course and assignment management for students. Some
notebooks perform a computation by converting the code
written in one language (e.g., Python) to JavaScript, which
then runs within the user’s browser. By contrast, Runestone
and Jupyter notebooks are front-end, browser-based interfaces
for back-end computations that typically run on a web server.
Usually these computations are written in scripting languages;
however back-end extensions exist for building and running
non-scripted computations (e.g., C programs in a Data Struc-
tures book or SQL computations in a Databases text).

III. OVERVIEW OF MATERIALS

To teach PDC concepts in a remote environment, we de-
veloped two modules of materials, one for teaching shared
memory parallel concepts and one for distributed memory

parallel concepts. We designed the shared memory module
as a hands-on activity using OpenMP examples running on
a Raspberry Pi SBC, with the exercise and code delivered
via an interactive module [13] developed using Runestone
Interactive. We designed the distributed memory module to use
MPI examples [15] running on any of several remote clusters,
with the exercise and code delivered via a combination of
Google Colab [14] and Jupyter Notebooks [16]. Both of these
modules [13], [14] are freely available for any instructor to
adapt to their courses. We designed these modules to be self-
paced, so that learners could work through these activities
asynchronously. To match the duration of a standard lab period
at many institutions, we designed each of these two activities
to take approximately 2 hours. We give a brief overview of
these materials in Section III-A and Section III-B below.

A. Materials for teaching Multicore Computing Remotely

The first module focuses on learning shared memory parallel
concepts using OpenMP on the Raspberry Pi. We designed
this module to use $100 Raspberry Pi kits that could be sent
to remote learners in the mail, if they did not already own
one. These kits included a customized Raspberry Pi system
image [45] that could be mailed to remote learners who already
own a Raspberry Pi. Table I provides details of our kits.

TABLE 1
APPROXIMATE COST BREAKDOWN OF MAILED RASPBERRY PI KIT
Part Cost
CanaKit with 2G Raspberry Pi [46] $62.99
Ethernet-USB A dongle $15.95
USB A-C dongle $3.99
Ethernet cable $1.55
16G MicroSD $5.41
Kit case $10.77
[Total Kit Cost [$100.66 |

Note that in addition to the Raspberry Pi and its power
supply, these kits included an Ethernet cable and a Ethernet-
to-USB dongle (if needed) for connecting the Pi unit to a
personal laptop or desktop. Note also we could build these kits
for approximately $100 because several of these materials can
be bought in bulk. These kits represent a significant innovation
over the Pimoroni-based kits described in [47], which were
more expensive, bulkier, and whose image only worked for
limited hardware configurations.

The MicroSD cards in these kits contain the system image
for the Raspberry Pi plus the OpenMP code examples for our
shared memory parallel computing module. This image was
tested and confirmed to work on the all Raspberry Pi models
from the 3B onward. To keep these custom images up to
date, we use Ansible and other software maintenance tools.
This image is freely available for instructors and learners to
download and use in their courses [45].

We also used Runestone Interactive [44] to create a free,
online interactive “virtual” stand-alone module [13]. This
module includes instructional videos showing learners how to

set up their Raspberry Pi devices and begin using our custom
system image. The free availability of this Runestone module
and Raspberry Pi image, plus the inexpensive kit detailed in
Table I make it easy and seamless for instructors to incorporate
these materials directly into their own classrooms.

To introduce learners to shared memory parallel computing
concepts, the Runestone module uses OpenMP C/C++ pat-
ternlets [17]. Our module has learners perform the handout’s
activities on their Raspberry Pi devices, so we did not use
the Runestone Interactive Active Code feature. However, we
incorporated other Runestone Interactive features, including
video explanations, visualizations, and interactive questions
(e.g., multiple choice, fill in the blank, drag-and-drop) to quiz
the reader on key concepts. Figure 1 shows a small component
of the virtual module where we explain the concept of race
conditions in a video, and then encourage participants to check
their understanding by answering a multiple-choice question.

2.3 Race Conditions

The following video will help you understand what is going on:

> 1:05/2:02

Try and answer the following question:

Q-2: What is a race condition?

O A Itis the smallest set of instructions that must execute sequentailly to ensure comectness.
@® B. Itis a mechanism that helps protect a resource.

O C. It is something that arises when two or more threads attempt to modify a shared variable

Check me

Activity: 2 — Multiple Choice (sp_mc_2)

Fig. 1. View of small portion of Raspberry Pi virtual module.

This virtual module is designed to be completed in a self-
paced 2-hour period. The first half hour presents an overview
of processes, threads and multicore systems, and gives a short
introduction to the OpenMP patternlets. During the next hour,
learners work through a hands-on exercise in which they
explore the patternlets at their own pace. The last half hour
examines two OpenMP exemplars: numerical integration and
drug design. In this manner, learners are exposed to general
concepts and vocabulary, simple examples, more complex
programs, and finally perform a small benchmarking study
to reinforce the concepts introduced at the beginning of the
module. The module is thus designed for use by students
working remotely in a single lab period, either synchronously
or asynchronously. It can be used either as a stand-alone
introduction to parallelism or in conjunction with lectures
developed by the instructor.

B. Materials for teaching Distributed Computing Remotely

Unlike the shared memory paradigm, MPI carries out par-
allel programming using independent processes that commu-
nicate with one another by sending and receiving messages.
The mpidpy Python library provides a Python interface to
the library of (C) MPI functions. To provide an activity in
which remote learners could experience the message passing
paradigm, we developed a module of mpidpy instructional
materials for remote use on three different platforms:

1) Colab [43] is Google’s free web-based variant of Jupyter
notebooks, for authoring and executing Python code.
The code runs on a single core Google Cloud VM, not
a distributed system, but the key concepts of message
passing can still be demonstrated. Our Colab material
is freely available for educational use [14]; it requires a
Google account to save in one’s Google Drive space.

2) A Jupyter notebook connected to a cluster on the
Chameleon Cloud [48], a cloud-based test-bed for ex-
perimental computer science research and teaching [49].
This cluster is a powerful high-performance distributed
system, enabling its users to experience the speed and
scalability of distributed computing. Chameleon users
may contact us for a copy of this Jupyter notebook.

3) A VNC connection to a 64-core VM running on a large
server at St. Olaf. Like Chameleon, this server provided
good parallel speedup and scalability when running our
mpidpy exemplar applications. Our material for using
this VM is also freely available for educational use [15].
Faculty require access to their own server or an account
on the St. Olaf system.

For the first hour of this module, learners use the Google
Colab material to explore MPI patternlets (see Figure 2).
After a brief introduction to Colab notebooks and running
Python examples, learners work at their own pace through the
patternlets material, providing them with hands-on experience
applying MPI concepts and terminology.

In the second hour of this module, learners explore either
of two exemplars that use the message passing patterns in-
troduced during the first hour: (i) a Forest Fire Simulation, or
(i1) a Drug Design example. Learners work through whichever
of these examples most interested them; they also choose
to use either the aforementioned Chameleon-backed Jupyter
notebook or use a VNC client to connect to the St. Olaf VM
where they complete these activities using a Linux terminal.
After a brief explanation of these options, participants choose
one and proceeded through the exercise at their own pace.

IV. ASSESSMENT & RESULTS

To assess the effectiveness of these modules, we used
them as teaching materials in a 2.5 day virtual PDC faculty
development workshop in July 2020 [50]. The workshop
participants worked through our first (shared memory) module
during a 2-hour session on the first morning, and through
the second (distributed memory) module the second morning.

& mpidpy_patternlets.ipynb B Comment 2% share o

File Edit View Insert Runtime Tools Help All changes saved

+ Code -+ Text v B v | Ediing A

~ Single Program, Multiple Data
This code forms the basis of all of the other examples that follow. It is the fundamental way we structure

(=) parallel programs today.

2] 1 $suritefile 00spmd.py
2 from mpidpy import MPT
3
4 def main():
5 comm = MPI.COMM_WORLD
6 id = comm.Get_rank() #number of the process running the code
7 numProcesses = comm.Get_size() #total number of processes running
8 myHostName = MPI.Get_processor_name() #machine name running the code
9
10 print("Greetings from process {} of {} on {}"\
11 .format(id, numProcesses, myHostName))
12
13 ########## Run the main function
14 main()
15

Next we see how we can use the mpirun program to execute the above python code using 4 processes. The value
after -np is the number of processes to use when running the file of python code saved when executing the
previous code cell.

rTVeoB R E N
© ! mpirun --allow-run-as-root -mp 4 python 00spmd.py

[» Greetings from process 1 of 4 on d6ff4£902ed6
Greetings from process 3 of 4 on d6ff4£902ed6
Greetings from process 2 of 4 on d6ff4£902ed6
Greetings from process 0 of 4 on d6£f4£902ed6

Fig. 2. View of small portion of colab notebook.

The workshop’s afternoon sessions were devoted to other
demonstrations and discussions related to PDC education.

The 22 participants in our workshop were a mix of faculty
members (85%) and graduate students (15%). Of these, 19
were from institutions in the continental U.S., one was from
Puerto Rico, and two were international. 77% of the attendees
identified as male, 18% as female, and 5% as other. 46% of the
attendees were tenured or tenure track at their institutions; 39%
were non-tenure track; the 15% who were graduate students
expected to graduate within the coming year and wanted to
learn how to teach PDC at their future institutions.

To aid in gathering unbiased and independent feedback,
we contracted with an independent evaluator, David Hiel &
Associates (DHA), to survey the remote workshop partic-
ipants. To evaluate the workshop, DHA incorporated both
quantitative and qualitative methodologies in their survey. As
part of survey process, DHA asked participants to indicate on
a Likert Scale (1 is “not at all useful”, 5 is “extremely useful”)
the perceived usefulness of each workshop session to helping
them implement PDC topics in courses at their institutions and
to their general professional development. Table II summarizes
the participants’ responses related to our modules.

TABLE II
HOW USEFUL WAS EACH SESSION FOR (A) IMPLEMENTING PDC IN YOUR
COURSES; (B) YOUR PROFESSIONAL DEVELOPMENT?

Session (A) B)
OpenMP on Raspberry Pi 4.55 4.45
MPI & Distr. Cluster Computing 4.38 4.29

As shown in Table II, the workshop participants rated our
two modules very positively. While they rated each of the
workshop’s sessions at 4 or higher (out of 5), the highest and
third-highest rated sessions where those in which they used

these two modules. (A session providing an overview of the
CSinParallel.org project received their second-highest rating.)

DHA also surveyed participants about their plans for the fall
2020 semester, given the ongoing COVID-19 pandemic. As
of July, 74% of participants anticipated that their institutions
would be offering in-person and remote hybrid instruction.
39% anticipated teaching their courses fully remotely, with
another 35% anticipating teaching their courses in a in-
person+remote hybrid manner. Only 17% anticipated teaching
their courses solely in-person. During session breaks, conver-
sation commonly turned to teaching plans for the fall semester,
reflecting the high anxiety that many of the participants were
feeling, and underscoring the group’s high interest in learning
how teach PDC in remote settings.

A. Efficacy of Remote Multicore Computing Materials

By far, the most “high-risk” activity in the workshop was
the use of the Raspberry Pi platform for teaching OpenMP
concepts remotely. While prior work [47] had demonstrated
the efficacy of using the Raspberry Pi to introduce multicore
concepts and OpenMP in an in-person environment, it was
unclear if a positive, hands-on learning environment could be
provided for participants in a remote learning environment.
Specifically, the in-person instructors had been crucial to the
success of prior Raspberry Pi workshops [47], especially for
aiding with setup and providing on-the-spot troubleshooting
and assistance as participants worked through the hands-on
activity. In addition, the Pi platform came with potential
logistical challenges, such as ensuring that everyone had their
Raspberry Pis set up prior to the start of the morning activity.

Despite these concerns, the remote, hands-on shared-
memory session using the Raspberry Pi was extremely suc-
cessful. As noted previously, the workshop participants rated
our OpenMP on the Raspberry Pi session as the most useful
for their professional development (4.45/5) and most useful
for implementing PDC topics in their courses at their own
institutions (4.55/5). None of the participants reported any
technical difficulties during this session; overall, they appeared
to greatly enjoy interacting with the Raspberry Pi, guided by
the Runestone Interactive virtual handout.

We attribute the lack of technical issues to three factors:

1) The new Raspberry Pi image [45] developed for this
activity works on a variety of Raspberry Pis and reduces
the total number of steps required for setup.

2) The video walkthroughs available in the first chapter of
the virtual module [13] provide step-by-step instructions
for setting up the Raspberry Pi for initial use; they also
included solutions to common issues participants might
face during setup. Videos allow learners to pause and/or
replay the instructions as needed.

3) The kits that we mailed to participants (a) were relatively
inexpensive (see Table I) and (b) made it easy for
learners to use their laptops as I/O devices for their
Raspberry Pis, regardless of whether they were running
Linux, MacOS, or Windows on their laptops.

We strongly believe that the improved Raspberry Pi image,
videos, and kit that we created to support the shared-memory
module were the key factors that combind to eliminate any
technical issues when using the Raspberry Pis in the remote
setting. All of these instructional materials are freely available
via the workshop site [50].

In open-ended feedback, several participants gave high
praise to the Raspberry Pi as a platform for teaching multicore
concepts. “We can see — using the Pi — several key concepts
demonstrated. The level of difficulty was well in the range of
our students. After this day — I immediately saw where we
can show and use the exercises in our class!!” exclaimed one
participant. Participants also commented about the “physically
compelling” nature of the Raspberry Pi, and how “it brings
concepts home in a way that nothing else seems to do”.

Other participants remarked that they liked the idea of
students using a Raspberry Pi to run parallel examples rather
than their own laptops, due to the great diversity in laptops
that students tend to have. “Having a consistent system makes
life so much easier and allows for a consistent experience”
said another participant. Another participant saw the Raspberry
Pi as an asset for making it easier to learn PDC concepts
in a remote environment because students do not need to
connect to a remote server: “Having students connect to Zoom
and separately connect to a remote server can be hard on
some wireless connections,” they noted. These results clearly
demonstrate that using a hands-on platform like the Raspberry
Pi in conjunction with our virtual module supports effective
instruction in a remote environment.

B. Efficacy of Remote Distributed Computing Materials

As noted previously, the participants also ranked the hands-
on MPI and Distributed/Cluster Computing session as highly
useful for both their professional development (4.38/5) and
teaching PDC in a remote environment (4.29/5). This module
used multiple strategies to introduce distributed computing in
an engaging manner, focusing on how PDC concepts could be
taught in early CS courses.

Several participants reacted very positively to the use of
mpidpy to introduce message passing. “It did show me that
MPI can be used in Python,;” said one participant, “this makes
Python somewhat viable as a parallel teaching tool”. Specif-
ically, the use of mpidpy to introduce MPI patternlets in a
Google Colab was extremely popular. While Colab VMs have
just one core, they are still effective at illustrating fundamental
message-passing concepts, thanks to the simplicity of the
message-passing patternlets. “Although they seem difficult,”
observed one participant, “the parallel programming basics
are not [difficult] when introduced correctly.”

Unfortunately, the Colab’s single-core VMs prevent learners
from experiencing parallel speedup, which is one of the goals
of the second part of this session. To experience speedup,
learners must run the exemplar programs on a cluster or
multicore processor. To accomplish this, we gave participants
two options: (i) using a Jupyter notebook whose backend was
the Chameleon cluster, or (ii) using a 64-core VM at St. Olaf.

The goal in giving participants a choice was to demonstrate
flexibility by showing them that PDC can be effectively taught
on different hardware platforms.

While the Jupyter-Chameleon approach worked seamlessly,
a minor issue was encountered in using the St. Olaf VM: Some
“eager beaver” participants raced ahead of the instructions
and tried to log in incorrectly, triggering a VNC-firewall issue
that temporarily suspended their remote access via VNC. The
participants could still ssh to the VM to complete the exercise,
but the VNC-firewall issue caused some consternation amongst
those participants: (“The platform switches seem to be a
little confusing.”) Despite this hiccup, participants found these
hands-on exemplar activities to be very motivating. Some
explicitly mentioned that they planned to incorporate the
Forest Fire Simulation exemplar [15] into their courses.

C. Lessons Learned

DHC used pre- and post-workshop surveys with common
questions to gauge the workshop’s effects on the participants’
confidence and preparation for implementing PDC topics in
their courses. Figure 3 shows how these modules increased
participant confidence. A paired Student’s ¢-test indicates that
participants experienced a significant increase in confidence
(pre, = 2.82, post,, = 3.59, p = 0.0004).

very

Fig. 3. Indicate your current level of confidence in implementing PDC topics
in your courses.

10
Pre-Survey
m Post-Survey

6]
6]
o]
2
H ‘'R

not at all slightly moderately

Count

|

extremely

o

Figure 4 shows how our modules increased participant
preparedness. A paired Student’s ¢-test showed this increase to
be significant (pre,, = 2.59, post,, = 3.77, p = 4.18¢ — 08).

Pre-Survey
10 { mmm Post-Survey

il I 1

T
a little bit somewhat quite a bit very much

Count
o
L

o

not at all

Fig. 4. How prepared do you feel to successfully implement PDC topics in
your courses?

In their open-ended responses, participants rated the quality
of the free teaching materials and their enjoyment of the
interactive hands-on activities very highly. “The level where
the material was presented was perfect” noted one person. “I
got a lot of material and I feel quite prepared to offer a course
on parallel computing this coming Fall” said another. The
quantitative and qualitative feedback provide strong evidence
that our modules were highly effective in providing conceptual
and hands-on training for multicore and distributed computing.

Despite the need to mail Pi kits to participants, our multicore
session was much easier to prepare than our distributed
computing session, because it took significant effort to get
the Jupyter notebooks working on Chameleon; we could not
have done it without help from the Chameleon support staff.
Once the notebooks were set up, the Chameleon environment
worked seamlessly and participants enjoyed the experience.

By contrast, setting up the St. Olaf VM system was signif-
icantly easier for our team. However doing so requires signif-
icant Linux systems administration experience and the non-
trivial hardware cost (=~ $5,000.00 for a 64-core multicore
server). Furthermore, “eager beaver” students who neglect to
follow directions may cause issues, which can be especially
problematic when learners are working asynchronously.

Community building is an important part of any classroom
experience. To that end, we asked our virtual learners to leave
their webcams on during instructional sessions so that we
could read facial expressions. (They could turn them off during
self-paced exploration times.) However, it took a special effort
to get some learners to actively participate in discussion
sessions. One participant explained, “I’m pretty quiet/shy in
general and have telephone anxiety... I think I would have
contributed more if we weren’t trapped in the online format.”
At the same time, other more extroverted participants had a
tendency to dominate conversations, requiring special effort
to curtail their contributions. We believe that our remote
workshop experiences apply to the virtual classroom, where
it takes extra effort (i) to keep extroverted students from
dominating discussions and (ii) to draw out shy students,
whose anxieties may be amplified in an online format. In a
virtual environment, extra care is needed to include everyone.

V. CONCLUSIONS

The online environment adds new obstacles to the challenge
of teaching PDC concepts and skills. Motivated by the need
to teach PDC during the COVID-19 pandemic, we developed
a set of high-quality, self-paced materials that are specifically
designed for use in a remote environment. Our preliminary
assessment data offers evidence that our materials can be used
to effectively teach PDC in a virtual classroom environment. In
closing, we describe the specific strategies we used to achieve
the goals we listed in Section I:

Strategy 1: Learners can learn multicore computing con-
cepts effectively in a remote environment by using a Raspberry
Pi and our standalone virtual module. Despite the risks
and potential challenges of having each student set up and

operating Raspberry Pis independently and without an in-
person instructor’s help, our results suggest that a personal
SBC, a flexible SBC image, and detailed setup videos greatly
streamline the learner’s experience. To get the image onto to
the Pi, learners just burn the image onto the provided microSD
card. Instructors wishing to streamline the process further can
mail or provide pre-flashed microSD cards to students. Once
set up, the Pi provides a local, tactile platform for learning
OpenMP multi-threading, achieving Goal 1.

Strategy 2: Remote learners can learn distributed com-
puting concepts by using Google Colab and the mpidpy
version of the MPI patternlets. Our assessment results indicate
that running mpidpy patternlets within a Google Colab is
an effective way to introduce message-passing patterns. The
mpidpy library reduces the syntactic complexity of most
MPI commands, making this approach accessible to even
first-year students. While the Colab’s unicore VM greatly
limits the performance and scalability of distributed computing
applications, it is perfectly adequate for introducing message
passing concepts via the MPI patternlets. Furthermore, the
Colab patternlets require no setup on the part of instructors;
students simply need a (free) Google account in which to save
the materials.

To let students experience speedup and scalability, it is
preferable to run exemplar applications on Chameleon via
a Jupyter notebook or on a private system like the St. Olaf
VM. Our results suggest that the two-pronged approach of (i)
introducing message-passing using a Colab to run the MPI
patternlets, and (ii) delving deeper by using a remote cluster
to run MPI exemplars is an effective strategy for teaching
distributed computing concepts in a remote environment.

Strategy 3: Remote learners will enjoy highly interactive
materials that they can work through at their own pace.
Creating high-quality free materials that are effective in a
remote environment takes considerable time; the authors de-
voted much time to developing the Raspberry Pi kit and
image [45], the Runestone shared-memory module [13], the
Google Colab notebook [14], the mpidpy exemplars [15], the
Jupyter notebook for the Chameleon cluster [16], and setting
up the remote VM system at St. Olaf. However, the benefits
are clear: For those learning about PDC for the first time, our
highly interactive materials make the learning engaging, even
in a remote environment. For instructors (who are typically
short on time and may be new to PDC), our free materials
make it relatively easy to inject PDC into their classrooms in
a single two-hour lab period. We anticipate that our materials
will be extremely useful to educators even in non-pandemic
circumstances, as classrooms increasingly attempt to provide
learning experiences that are amenable to an online format.

We also believe our results have implications for anyone
teaching computing in a remote environment. An SBC like
the Raspberry Pi provides an engaging, tactile, motivating
platform for learning about multicore computing, but such
devices can also be used to teach other computing topics
(e.g. [51], [52]). Likewise, we have shown that browser-based
front-ends like Jupyter notebooks and Google Colabs provide

user-friendly ways to introduce MPI distributed multiprocess-
ing; it would be even easier to use these tools to teach other
computing topics to remote learners.

We acknowledge that our assessment results are prelimi-
nary; a key limitation is that our assessment population were
faculty learners, some with prior experience with PDC, and
all with an interest in teaching PDC. We note however that
our results seem promising, since our faculty learners: (i)
expressed intentions to adopt our materials into their own
classrooms, and (ii) rated these materials as holding high
value for their professional development. We believe that if
CS faculty find these materials to be useful for professional
development, then those materials are also likely to be useful
for the professional development of today’s CS students.

In our virtual workshop, we found it took extra effort
to provide every participant with a communal experience,
compared to an in-person workshop. Anecdotally, this also
appears to be true in remote classrooms. While mandating that
remote-learners’ cameras stay on can help somewhat, special
efforts are still needed to engage with remote-learners and
keep virtual discussions balanced.

Lastly, we hope this report will encourage other PDC edu-
cators to make use of our materials in their own classrooms,
and build upon the approaches described here to create addi-
tional high-quality materials for use by the PDC educational
community.

ACKNOWLEDGMENT

This work was supported by the National Science Founda-
tion, DUE-1822480/1822486/1855761. The views expressed
in this article are those of the author(s) and do not reflect
the official policy or position of the Department of the Army,
Department of Defense or the U.S. Government.

REFERENCES

[1] The NSF/IEEE-TCPP Curriculum Working Group, “NSF/IEEE-TCPP
curriculum initiative on parallel and distributed computing - core topics
for undergraduates,” http://www.cs.gsu.edu/ tcpp/curriculum/, 2012.

[2] ACM/IEEE-CS Joint Task Force on Computing Curricula, “Computer
science curricula 2013” ACM Press and IEEE Computer
Society Press, Tech. Rep., December 2013. [Online]. Available:
http://dx.doi.org/10.1145/2534860

[3] J. R. Graham, “Integrating parallel
into traditional computer science curricula,”
vol. 39, no. 4, . 75-78, Dec. 2007.
https://doi.org/10.1145/1345375.1345419

[4] R. Brown and E. Shoop, “Modules in community: Injecting
more parallelism into computer science curricula,” in Proceedings
of the 42nd ACM Technical Symposium on Computer Science
Education, ser. SIGCSE ’11. New York, NY, USA: Association
for Computing Machinery, 2011, p. 447-452. [Online]. Available:
https://doi.org/10.1145/1953163.1953293

[5] H. C. de Freitas, “Introducing parallel programming to traditional
undergraduate courses,” in 2012 Frontiers in Education Conference
Proceedings, 2012, pp. 1-6.

[6] M. Burtscher, W. Peng, A. Qasem, H. Shi, D. Tamir, and
H. Thiry, “A module-based approach to adopting the 2013 acm
curricular recommendations on parallel computing,” in Proceedings
of the 46th ACM Technical Symposium on Computer Science
Education, ser. SIGCSE ’15. New York, NY, USA: Association
for Computing Machinery, 2015, p. 36—41. [Online]. Available:
https://doi.org/10.1145/2676723.2677270

programming techniques
SIGCSE Bull.,
[Online]. Available:

[7]

[8]

[9]

[10]

(11]

(12]

[13]

[14]

[15]
[16]

[17]

(18]
[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

S. Ghafoor, D. W. Brown, and M. Rogers, “Integrating parallel com-
puting in introductory programming classes: an experience and lessons
learned,” in European Conference on Parallel Processing. Springer,
2017, pp. 216-226.

H. Wan, X. Gao, X. Long, and B. Jiang, “Introducing parallel computing
concepts in computer system related courses,” in 2017 IEEE Frontiers
in Education Conference (FIE), 2017, pp. 1-7.

J. Bruner, The process of education. Harvard University Press.
Cambridge, Massachusetts, 1960.

D. DiBiasio, W. M. Clark, A. G. Dixon, L. Comparini, and K. O’Connor,
“Evaluation of a spiral curriculum for engineering,” in FIE’99 Frontiers
in Education. 29th Annual Frontiers in Education Conference. Designing
the Future of Science and Engineering Education. Conference Proceed-
ings (IEEE Cat. No.99CH37011, vol. 2, 1999, pp. 12D1/15-12D1/18
vol.2.

R. M. Harden, “What is a spiral curriculum?” Medical teacher, vol. 21,
no. 2, pp. 141-143, 1999.

T. J. Dowding, “The application of a spiral curriculum model to
technical training curricula,” Educational Technology, vol. 33, no. 7, pp.
18-28, 1993. [Online]. Available: http://www.jstor.org/stable/44428015
S. J. Matthews, E. Shoop, J. C. Adams, and R. Brown.
(2020) Raspberry Pi - Virtual Handout. [Online]. Available:
https://pdcbook.calvin.edu/pdcbook/RaspberryPiHandout/

E. Shoop. (2020) Distributed parallel programming patterns using
mpidpy. [Online]. Available: https://colab.research.google.com/drive/
lyxusXcFQ9ealbff4_qS5iToMhGeQnmSwC

E. Shoop and R. A. Brown. (2020) CSinParallel mpidpy examples.
[Online]. Available: https://github.com/csinparallel/mpi4py-examples

E. Shoop. (2020) Jupyter forest fire simulation. [Online]. Available:
https://chi-dyn-192-5-87-59.uc.chameleoncloud.org/

J. C. Adams, “Patternlets: A teaching tool for introducing students
to parallel design patterns,” in 2015 IEEE International Parallel and
Distributed Processing Symposium Workshop. 1EEE, 2015, pp. 752—
759.

L. Dalcin, R. Paz, and M. Storti, “MPI for python,” Journal of Parallel
and Distributed Computing, vol. 65, no. 9, pp. 1108-1115, 2005.

S. in the Public Interest. (2020) Open MPI: Open source high
performance computing. [Online]. Available: https://www.open-mpi.org/
E. Gamma, R. Helm, R. Johnson, and J. Vlissides, “Design patterns: Ab-
straction and reuse of object-oriented design,” in European Conference
on Object-Oriented Programming. Springer, 1993, pp. 406—431.
——, Design patterns: elements of reusable object-oriented software.
Addison-wesley Reading, MA, 1995.

T. G. Mattson, B. A. Sanders, and B. Massingill, Patterns for parallel
programming, 6th ed., ser. The software patterns series. Boston, Mass.:
Addison-Wesley, 2010, oCLC: 688595488.

K. Keutzer, B. L. Massingill, T. G. Mattson, and B. A. Sanders, “A
design pattern language for engineering (parallel) software: Merging
the PLPP and OPL projects,” in Proceedings of the 2010 Workshop on
Parallel Programming Patterns, ser. ParaPLoP "10. New York, NY,
USA: Association for Computing Machinery, 2010. [Online]. Available:
https://doi.org/10.1145/1953611.1953620

O. W. Group, “A pattern language for parallel programming,”
Retrieved September 14, 2013, from tt http://parlab.eecs.b erke-
ley.edu/wiki/patterns/patterns.

E. J. Sowell, “Effects of manipulative materials in mathematics instruc-
tion,” Journal for research in mathematics education, pp. 498-505, 1989.
W. M. Carroll and D. Porter, “Invented strategies can develop meaningful
mathematical procedures,” Teaching Children Mathematics, vol. 3, no. 7,
pp. 370-375, 1997.

L. Jordan, M. D. Miller, and C. D. Mercer, “The effects of concrete to
semiconcrete to abstract instruction in the acquisition and retention of
fraction concepts and skills.” Learning Disabilities: A Multidisciplinary
Journal, vol. 9, no. 3, pp. 115-22, 1999.

R. Ross and R. Kurtz, “Making manipulatives work: A strategy for
success,” Arithmetic teacher, vol. 40, no. 5, pp. 254-258, 1993.

E. H. Fennema, “The relative effectiveness of a symbolic and a con-
crete model in learning a selected mathematical principle,” Journal for
Research in Mathematics Education, pp. 233-238, 1972.

S. Papert, “Mindstorms: Computers, children, and powerful ideas,” NY:
Basic Books, p. 255, 1980.

M. E. Chappell and M. E. Strutchens, “Creating connections: Promoting
algebraic thinking with concrete models,” Mathematics Teaching in the
Middle School, vol. 7, no. 1, p. 20, 2001.

(33]
(34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

(471

(48]

[49]

[50]

[51]

(52]

e

J. Sarama and D. H. Clements, ““concrete” computer manipulatives in
mathematics education,” Child Development Perspectives, vol. 3, no. 3,
pp. 145-150, 2009.

P. L. Moch, “Manipulatives work!” in The Educational Forum, vol. 66,
no. 1. Taylor & Francis, 2002, pp. 81-87.

M. Richardson and S. Wallace, Getting started with Raspberry Pi.
O’Reilly Media, Inc.”, 2012.

D. Toth, “A portable cluster for each student,” in 2014 IEEE Interna-
tional Parallel & Distributed Processing Symposium Workshops. 1EEE,
2014, pp. 1130-1134.

S. J. Cox, J. T. Cox, R. P. Boardman, S. J. Johnston, M. Scott, and N. S.
O’brien, “Iridis-pi: a low-cost, compact demonstration cluster,” Cluster
Computing, vol. 17, no. 2, pp. 349-358, 2014.

S. J. Matthews, “Teaching with Parallella: A first look in an undergrad-
uate parallel computing course,” J. Comput. Sci. Coll., vol. 31, no. 3, p.
18-27, Jan. 2016.

H. Shen, “Interactive notebooks: Sharing the code,” Nature, vol. 515,
no. 7525, pp. 151-152, 2014.

T. Kluyver, B. Ragan-Kelley, F. Pérez, B. E. Granger, M. Bussonnier,
J. Frederic, K. Kelley, J. B. Hamrick, J. Grout, S. Corlay et al.,
“Jupyter notebooks-a publishing format for reproducible computational
workflows.” in ELPUB, 2016, pp. 87-90.

J. B. Hamrick, “Creating and grading IPython/Jupyter notebook
assignments with nbgrader,” in Proceedings of the 47th ACM Technical
Symposium on Computing Science Education, ser. SIGCSE ’16. New
York, NY, USA: Association for Computing Machinery, 2016, p. 242.
[Online]. Available: https://doi.org/10.1145/2839509.2850507

H. Manzoor, A. Naik, C. A. Shaffer, C. North, and S. H.
Edwards, “Auto-grading Jupyter notebooks,” in Proceedings of the
51st ACM Technical Symposium on Computer Science Education,
ser. SIGCSE ’20. New York, NY, USA: Association for
Computing Machinery, 2020, p. 1139-1144. [Online]. Available:
https://doi.org/10.1145/3328778.3366947

L. B. Ngo, A. T. Srinath, J. Denton, and M. Ziolkowski, “Unifying com-
puting resources and access interface to support parallel and distributed
computing education,” Journal of Parallel and Distributed Computing,
vol. 118, pp. 201-212, 2018.

Google Research. (2020) Colaboratory.
https://colab.research.google.com/

B. Miller and D. Ranum, “Runestone interactive: tools for creating
interactive course materials,” in Proceedings of the first ACM conference
on Learning@ scale conference, 2014, pp. 213-214.

R. Brown. (2020) Raspberry Pi image. [Online]. Available:
http://csinparallel.cs.stolaf.edu/2020-06-18-csip-image-3.0.2.zip

C. Corp. (2020) CanaKit Raspberry Pi 4 2GB Basic Starter
Kit. [Online]. Available: https://www.amazon.com/gp/product/BO7VX
BMWQK/ref=ppx_yo_dt_b_asin_title_o07_s01?ie=UTF8&psc=1

S. J. Matthews, J. C. Adams, R. A. Brown, and E. Shoop,
“Portable parallel computing with the Raspberry Pi,” in Proceedings
of the 49th ACM Technical Symposium on Computer Science
Education, ser. SIGCSE ’18. New York, NY, USA: Association
for Computing Machinery, 2018, p. 92-97. [Online]. Available:
https://doi.org/10.1145/3159450.3159558

K. Keahey, J. Anderson, Z. Zhen, P. Riteau, P. Ruth, D. Stanzione,
M. Cevik, J. Colleran, H. S. Gunawi, C. Hammock, J. Mambretti,
A. Barnes, F. Halbach, A. Rocha, and J. Stubbs. (2020)
Lessons learned from the Chameleon testbed. [Online]. Available:
https://www.chameleoncloud.org/media/filer_public/8e/4f/8e4f2dc7-
35f3-4cal-b886-4a196298be05/atc20-14.pdf

“Lessons learned from the Chameleon testbed,” in
2020 USENIX Annual Technical Conference (USENIX ATC 20).
USENIX Association, Jul. 2020, pp. 219-233. [Online]. Available:
https://www.usenix.org/conference/atc20/presentation/keahey

J. Adams, R. Brown, S. Matthews, and E. Shoop. (2020)
CSinParallel summer 2020 virtual workshop. [Online]. Available:
https://csinparallel.org/csinparallel/workshops/Virtual20/index.html

H. ElAarag, “Deeper learning in computer science education using
Raspberry Pi,” J. Comput. Sci. Coll., vol. 33, no. 2, p. 161-170, Dec.
2017.

H. Guerra, A. Cardoso, V. Sousa, J. Leitdo, V. Graveto, and L. M.
Gomes, “Demonstration of programming in Python using a remote lab
with Raspberry Pi,” in 2015 3rd Experiment International Conference
(exp.at’15), 2015, pp. 101-102.

”»

[Online]. Available:

