
Comparing Machine Learning Techniques for Zeek
Log Analysis

Daniel K. Andrews
U.S. Military Academy

West Point, New York 10996
daniel.k.andrews.mil@mail.mil

Rajeev K. Agrawal
U.S. Army E.R.D.C

Vicksburg, MS 39180
rajeev.k.agrawal@erdc.dren.mil

Suzanne J. Matthews, Alexander S. Mentis
U.S. Military Academy

West Point, New York 10996
{suzanne.matthews,alexander.mentis}@westpoint.edu

Abstract—Network logs from intrusion detection and preven-
tion systems such as Zeek provide a plethora of information to
help network analysts identify malicious activity. However, the
volume of data collected necessitates an automated way to filter
it. Traditional signature-based “misuse detection” is unable to
detect previously unseen malicious activity. In contrast, machine
learning methods can suggest classifying network activity as
normal or malicious by learning hard-to-define patterns that
discriminate between the two classes. Previous work has applied
a variety of machine learning techniques to this problem with
some success, but the proprietary nature of real-world data
often makes accurately comparing the performance of different
techniques impossible. In this paper, we compare the performance
of eight machine learning models on the same real-world dataset
comprised of HTTP log data gathered over six months from an
enterprise network. Our experiments show that, when trained
and tested on the same data, k Nearest Neighbors results in
90.3% accuracy and outperforms the others in several ways.

I. INTRODUCTION

Almost every major organization in the world relies on
the Internet to stay connected with people inside and outside
of their institutions. Consequently, large amounts of Internet
traffic travels through these organizations daily, including
malicious connections that can be very harmful. In an effort to
improve the quality of protection, network analysts typically
employ “misuse detection” approaches [1], [2], which use sig-
natures to scan networks for known attacks [1]. For example,
researchers recently used Apache Spark to create a parallel
misuse detection approach for Bro logs [3]. However, misuse
detection approaches cannot detect new types of attacks, and
must be constantly updated with new rules and signatures [1].

Machine learning enables network operators to identify
activity that is similar to previously seen traffic, without
requiring a precise signature [2]. However, applying machine
learning to network activity is difficult due to the lack of
availability of real-world, labeled training data and the high
cost of errors [2]. As a result, most prior work uses publicly-
available (but synthetic) trace-route data such as NSL-KDD [4]
or the 1999 DARPA IDS dataset [5]. For example, researchers
proposed an enhanced Support-vector Machine (SVM) ap-
proach for network intrusion detection and tested their work
on the DARPA IDS dataset [6]. Adentunmbi et al. [7] com-
pared rough set and k Nearest Neighbors (kNN), Osareh et
al. [8] compared neural network and SVM, and Meng [9]
compared three different machine learning techniques on the

KDD dataset. However, the use of these datasets have been
criticized [2] due to their age and synthetic attack data. When
researchers have used real-world data in their testing, they
only tested a limited number of machine learning techniques
on proprietary data [10], [11].

Network log data derived from monitoring tools such as
Zeek (formerly Bro) [12] contain useful information that can
help network analysts glean patterns in network activity. Zeek
logs a variety of protocols (i.e. HTTP, SSH, DNS, Kerberos,
SMTP, etc.). While some research has looked at using log
data correlation to identify attacks [13], [14], our research
uses only HTTP logs. Due to the difficulty in accessing real
data, however, there is little prior work on applying machine
learning techniques to HTTP log data; BBAC [15], [16] is a
notable exception.

This paper compares the performance of eight unsupervised
and supervised machine learning techniques on Zeek HTTP
logs gathered from an enterprise network over a six-month
time span. Our work is novel in several ways. First, it
benchmarks performance of eight standard machine learning
approaches on a common set of data and evaluates each
method by runtime as well as accuracy. In contrast, most prior
work evaluates a single or a very small number of machine
learning techniques. Second, we run our analysis on real HTTP
log data gathered from an enterprise network. Our results show
that kNN yields the highest accuracy at 90.3%, and is the most
resilient to the removal of the “Bot” user-agent string from the
list of features.

The rest of the paper is as follows. Section II describes
the classification methods studied and related work. Section
III describes our experimental setup and results. Finally, we
present our conclusions in Section IV.

II. METHODS

A. Machine Learning Techniques

The eight model types included in our study are k-Means,
kNN, Gaussian Naive Bayes, Multinomial Naive Bayes, Com-
plement Naive Bayes, Bernoulli Naive Bayes, Non-linear
Support-vector Machine (NL-SVM), and Linear Support-
vector Machine (L-SVM). All of the machine learning models
used in this study were implemented with the Scikit-learn [17]
Python library. The techniques can be divided into three
groups: similarity-based algorithms, Naive Bayes algorithms,

978-1-7281-5818-1/19/$31.00 ©2019

20
19

 IE
EE

 M
IT

 U
nd

er
gr

ad
ua

te
 R

es
ea

rc
h

Te
ch

no
lo

gy
 C

on
fe

re
nc

e
(U

RT
C)

 |
 9

78
-1

-7
28

1-
58

18
-1

/1
9/

$3
1.

00
 ©

20
19

 IE
EE

 |
 D

O
I:

10
.1

10
9/

U
RT

C4
90

97
.2

01
9.

96
60

50
1

Authorized licensed use limited to: United States Military Academy. Downloaded on December 12,2022 at 02:35:39 UTC from IEEE Xplore. Restrictions apply.

and Support-vector Machines. A description of each method
and how it was implemented is given below.

1) Similarity-Based Algorithms: The k-Means machine
learning technique is an unsupervised clustering algorithm in
which k random points are used as starting points for the
“centroids” of the k clusters. The features of the entries in the
data set are used to plot each entry and associate them with the
nearest centroid. Then the centroids are moved to the center of
their assigned entries and the process repeats. When complete,
all of the entries associated with each centroid constitute a
cluster. We used Scikit-learn’s built in MiniBatchKMeans
to generate clusters. Since this technique is sensitive to the
choice of value for the hyperparameter k, we used an elbow
method analysis to determine that a k value of 10 worked
best for our data. After finding the ten clusters, we assigned
each cluster a classification of “normal” or “malicious” by
determining the majority class in the cluster, according to their
labels.

The kNN algorithm is similar to k-Means because it also
determines similarity between events based on the proximity
of the plotted data. Instead of using a pre-determined number
of centroids, each unlabeled point is assigned a classification
based on the majority class of its k nearest neighbors. Because
we had two classes of interest, we chose k = 3 for our
experiments to prevent ties in determining the majority class.
We used Scikit-learn’s KNeighborsClassifier for these
trials.

Visualizing the similarity of entries can be informative when
using similarity-based algorithms; however, because our data
set has more than two or three features, it is difficult to plot our
results in a usable way. To solve this problem we use principal
component analysis to make our data two-dimensional for
plotting. We used Scikit-learn’s built in function PCA for this.

2) Naive Bayes Algorithms: Naive Bayes algorithms are a
class of probabilistic classifiers that calculate the probability
an entry belongings to a class, given its features, under the
assumption that the features are conditionally independent.
Each of the Naive Bayes algorithms that we used are very sim-
ilar in the way that they calculate probability; however, each
algorithm has certain strengths and weaknesses. The Gaussian
Naive Bayes algorithm is better for classifying continuous
data; multinomial, complement, and Bernoulli Naive Bayes
algorithms are better for categorical data. The data set we
used for this study has both categorical and continuous data
in it which made each type of model a potential candidate.
We used Scikit-learn’s GaussianNB, MultinomialNB,
ComplementNB, and BernoulliNB functions for these
tests.

3) Support-vector Machines: Linear Support-vector Ma-
chines find the equation for a line that separates the entries in
their training set into two classes. Given the choice between
several such lines, SVMs select the line that maximizes
the distance between the line and the data points on either
side. Linear SVMs can be transformed into non-linear SVMs
through the use of a kernel function that projects the feature
space into higher dimensions. In this usage, the kernel function

acts as a measurement of similarity between inputs. To create
these models we used Scikit-learn’s SVC and LinearSVC
functions. We used the default radial basis function (RBF)
kernel for the non-linear SVM.

B. Model Features

One of the most important parts of building any machine
learning model is selecting the proper features to use. The data
set we used for training and testing started with 58 features.
We were able to remove several features by looking at how
much variance there was within the feature-set and using our
own domain knowledge about how important each feature was
likely to be. After this initial selection process, we were left
with 11 features. We did an additional round of analysis using
a heat map based on the correlation between a given feature
and the classification. This allowed us to identify and remove
four more features that did not influence the classification. We
were left with seven features: whether or not the entry had a
cookie associated with it, the destination port of the entry, the
request body length, the response body length, the URI length,
the HTTP verb associated with the entry, and whether or not
the user was a bot (referred to as “Bot” in this paper) based
on its user agent string.

III. EXPERIMENTAL SETUP & RESULTS

The data set used for this experiment was derived from
1, 461, 238 Zeek HTTP log events gathered from from an
enterprise network over a six-month time span using the
HACSAW [18] API. Of these, 312, 511 events were labeled
malicious. To create a data set consisting of a 50 − 50 split
of normal and malicious data, an additional 312, 511 normal
entries were selected at random to generate a final data set
of 625, 022 entries sorted by time-stamp. Since log data is
temporal, we processed data under the assumption that entries
closer together in time were more similar to one another. As
a result, we decided to train on events occurring earlier in
time, and test on events that were more recent, as opposed
to training/testing against random entries throughout the set.
Thus, the the first 80% (500, 017 events) of the data was used
to train our models while the last 20% (125, 005 events) of
the data was used for testing.

The metrics that we used to evaluate our models were
accuracy, recall, and precision:

accuracy =
correctPredictions

attemptedPredictions

recall =
correctlyPredictedMalicious

actualMalicious

precision =
correctlyPredictedmalicious

totalPredictedmalicious

Experimentation was done on an Intel(R) Core(TM) i7-
7600U CPU @ 2.80GHz and 32 GB of RAM. As an initial
test, we measured the training times of each of the eight
approaches. Results are shown in Table I. Times represent

978-1-7281-5818-1/19/$31.00 ©2019

Authorized licensed use limited to: United States Military Academy. Downloaded on December 12,2022 at 02:35:39 UTC from IEEE Xplore. Restrictions apply.

TABLE I
RESULTS SORTED BY FASTEST TRAINING TIME (SECONDS)

Model Training Time (seconds)
Gaussian NB 0.17

Multinomial NB 0.17
Bernoulli NB 0.19

Complement NB 0.19
k-Means 0.27
L-SVM 78.6

kNN 547
NL-SVM 13,978.6

Fig. 1. Accuracy of each Technique

an average of 30 runs, except for the non-linear SVM (NL-
SVM), due to its exceptionally long training time. Even
without considering NL-SVM, we observed a large disparity
in training time between the models. k-Means and the Naive-
Bayes approaches took less than a second to train. The linear
SVM (L-SVM) took a little over a minute. k-NN took under
ten minutes to train. In contrast, the NL-SVM took 3.88
hours to train—180 times longer than the L-SVM. Preliminary
testing showed that the accuracy obtained by the NL-SVM
was 88.1%, compared to 88% achieved by the L-SVM. For
this reason, we excluded NL-SVM from further analyses.

In our next set of experiments, we measured the accuracy,
precision, and recall of the different approaches using the test-
ing dataset against the models trained for each ML technique.
Results are shown in Figures 1-3. Complement Naive Bayes
test results are not shown because they yielded the exact same
accuracy, recall, and precision results as the multinomial Naive
Bayes results. We also trained an additional model for each
technique without the “Bot” feature in order to determine the
impact of that feature on performance.

Our results show that kNN produces models with the best
accuracy and recall. The kNN model with the “Bot” feature
obtained a recall of 89.0% and an accuracy of 90.3%. In other
words, when a kNN model sees a malicious entry, it is able to
predict that it is malicious 89.0% of the time. When trained
without the “Bot” feature, every technique (save for k-Means)
experienced a drop in accuracy of 3-18%. On the Without
“Bot” set, kNN’s recall is 85.6%, only a 4% drop from the
testing with the “Bot” feature. In these tests, kNN appears to
be highly resistant to the absence of the user-agent string.

Fig. 2. Recall of each Technique

Fig. 3. Precision of each Technique

While k-Means models also appear to be highly resistant to
the absence of the “Bot” feature, they are the worst perform-
ing. This is interesting because, while both kNN and k-Means
classify examples based on similarity to proximate neighbors,
they had a difference of about 24% in accuracy. This implies
a high degree of intermixing between the classes that is
indistinguishable when classifying an example according to a
large cluster’s centroid label rather than a smaller number of
local neighbors. Figure 4 and Figure 5 show a PCA plot of how
k-Means and kNN classify the training data. Green represents
entries classified as ‘normal’ and red represents “malicious”
data. The k-Means plot shows three perceivable clusters. In
Figure 6 we can see where k-Means classified our test set
incorrectly. Blue represents entries classified correctly and red
represents incorrectly classified entries. We can see why k-
Means performed so poorly as it struggled in areas where
there was overlap.

IV. CONCLUSION

The most successful model from our data was the kNN
model. The model trained with the ”Bot” feature had the
highest accuracy and recall. While this is good for our results,
it may not translate well into real-world performance since
user agent strings can be manipulated very easily by attackers;
however, kNN also showed itself to be highly resistant to the
removal of the “Bot” feature, while other ML techniques were
not. Finally, the kNN model takes minutes to train. Speed

978-1-7281-5818-1/19/$31.00 ©2019

Authorized licensed use limited to: United States Military Academy. Downloaded on December 12,2022 at 02:35:39 UTC from IEEE Xplore. Restrictions apply.

Fig. 4. PCA plot colored by k-Means classification (training data)

Fig. 5. PCA plot colored by kNN classification (training data)

of training is important to any practical application of these
techniques, since deployment models are likely to be trained
on much larger datasets.

If an organization intends to implement machine learning
in their cybersecurity infrastructure, it needs to gather a large
amount of labeled data and ensure that it is being labeled
properly. In our research we found that there was high vari-
ability in the input data and that training data can be difficult
to gather; however, our research shows that there is potential
for machine learning to be implemented in network security.
Future work could include more experimentation with features
that might produce even better models.

Fig. 6. PCA plot of k-means colored by correctness of classification (test
data)

ACKNOWLEDGMENT

This work was supported in part by high performance
computer time and resources from the DoD High Performance
Computing Modernization Program. The opinions expressed in
this work are solely of the authors and do not reflect those of
the U.S. Military Academy, the U.S. Army, or the DoD.

REFERENCES

[1] A. L. Buczak and E. Guven, “A survey of data mining and machine
learning methods for cyber security intrusion detection,” IEEE Commu-
nications Surveys & Tutorials, vol. 18, no. 2, pp. 1153–1176, 2015.

[2] R. Sommer and V. Paxson, “Outside the closed world: On using machine
learning for network intrusion detection,” in 2010 IEEE Symposium on
Security and Privacy, May 2010, pp. 305–316.

[3] S. Deaton, D. Brownfield, L. Kosta, Z. Zhu, and S. J. Matthews,
“Real-time regex matching with apache spark,” in 2017 IEEE High
Performance Extreme Computing Conference (HPEC), Sep. 2017, pp.
1–6.

[4] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, “A detailed
analysis of the KDD CUP 99 data set,” in 2009 IEEE Symposium
on Computational Intelligence for Security and Defense Applications.
IEEE, 2009, pp. 1–6.

[5] R. Lippmann, J. W. Haines, D. J. Fried, J. Korba, and K. Das, “The 1999
DARPA off-line intrusion detection evaluation,” Computer networks,
vol. 34, no. 4, pp. 579–595, 2000.

[6] T. Shon and J. Moon, “A hybrid machine learning approach to network
anomaly detection,” Inf. Sci., vol. 177, no. 18, pp. 3799–3821, Sep.
2007. [Online]. Available: https://doi.org/10.1016/j.ins.2007.03.025

[7] A. O. Adetunmbi, S. O. Falaki, O. S. Adewale, and B. K. Alese, “Net-
work intrusion detection based on rough set and k-nearest neighbour,”
International Journal of Computing and ICT Research, vol. 2, 2008.

[8] A. Osareh and B. Shadgar, “Intrusion detection in computer networks
based on machine learning algorithms,” IJCSNS International Journal
of Computer Science and Network Security, vol. 8, 2008.

[9] Y. Meng, “The practice on using machine learning for network anomaly
intrusion detection,” in 2011 International Conference on Machine
Learning and Cybernetics, vol. 2, July 2011, pp. 576–581.

[10] T. Pietraszek and A. Tanner, “Data mining and machine learning-
towards reducing false positives in intrusion detection,” Inf. Secur.
Tech. Rep., vol. 10, no. 3, pp. 169–183, Jan. 2005. [Online]. Available:
http://dx.doi.org/10.1016/j.istr.2005.07.001

[11] J. Stokes, J. Platt, J. Kravis, and M. Shilman, “ALADIN: Active learning
of anomalies to detect intrusions,” Microsoft Reserarch, Tech. Rep.
MSR-TR-2008-24, March 2008.

[12] V. Paxson. (2014) The Zeek network security monitor. [Online].
Available: https://www.zeek.org/

[13] B. Deokar and A. Hazarnis, “Intrusion detection system using log
files and reinforcement learning,” International Journal of Computer
Applications, vol. 45, no. 19, 2012.

[14] C. Abad, J. Taylor, C. Sengul, W. Yurcik, Y. Zhou, and K. Rowe, “Log
correlation for intrusion detection: a proof of concept,” in 19th Annual
Computer Security Applications Conference, 2003. Proceedings., Dec
2003, pp. 255–264.

[15] M. Mayhew, M. Atighetchi, A. Adler, and R. Greenstadt, “Use of
machine learning in big data analytics for insider threat detection,” in
MILCOM 2015 - 2015 IEEE Military Communications Conference, Oct
2015, pp. 915–922.

[16] A. Adler, M. J. Mayhew, J. Cleveland, M. Atighetchi, and R. Greenstadt,
“Using machine learning for behavior-based access control: Scalable
anomaly detection on tcp connections and http requests,” in MILCOM
2013 - 2013 IEEE Military Communications Conference, Nov 2013, pp.
1880–1887.

[17] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[18] L. Leonard and W. Glodek, “HACSAW: A trusted framework for cyber
situational awareness,” in Proceedings of the 5th Annual Symposium
and Bootcamp on Hot Topics in the Science of Security, ser. HoTSoS
’18. New York, NY, USA: ACM, 2018, pp. 12:1–12:1. [Online].
Available: http://doi.acm.org/10.1145/3190619.3190641

978-1-7281-5818-1/19/$31.00 ©2019

Authorized licensed use limited to: United States Military Academy. Downloaded on December 12,2022 at 02:35:39 UTC from IEEE Xplore. Restrictions apply.

