Investigating a Raspberry P1 Cluster for Detecting
Anomalies 1n the Smart Grid

Kasey Candelariof, Chris Boothf, Aaron St. Leger*, Suzanne J. Matthews*
Department of Electrical Engineering & Computer Science
United States Military Academy, West Point, NY 10996
*Corresponding Authors, Email: [aaron.stleger, suzanne.matthews] @usma.edu
TEmail: [kasey.r.candelario.mil, christopher.j.booth2.mil] @mail.mil

Abstract—Smart Grid Technology is an integral part of en-
suring the security of the power grid. To provide situational
awareness to grid operators, a smart grid system must be able to
detect alarm events (such as sudden voltage fluctuations or drops
in current) in close to real-time. In this paper, we propose the use
of a low energy Raspberry Pi cluster to detect anomalies in the
Smart Grid. We build a prototype cluster and test our approach
on a real data set of approximately 1 million measurements
derived from 8 PMUS from a 1000:1 scale emulation of a working
power grid. Our results show that a cluster of 12 Raspberry Pis
is capable of achieving better performance than a more power-
hungry multicore server at lower cost and a significant reduction
in power consumption.

Keywords: Smart Grid, Raspberry Pi, Anomaly Detection,
Multicore

I. INTRODUCTION

Smart grid technology is being developed and implemented
in power grids to improve reliability, efficiency and resiliency
of grid operation. Numerous online and offline smart grid
applications are currently being researched and developed [1].
Online applications can improve the response of grid opera-
tors, through manual intervention or automated control actions,
by providing a more detailed view of the power grid in real-
time or near real-time. Examples of online applications include
Wide area Monitoring Systems (WAMS) and Wide Area Con-
trol Systems (WACS) that leverage real-time synchrophasor
data from Phasor Measurement Units (PMU).

Synchrophasors are time synchronized phasor measure-
ments of voltages and currents in a power grid. Specifically,
each measurement consists of a magnitude, phase, and a
time stamp based on a GPS synchronized timing source.
WAMS and WACS can use these measurements for rapid state
measurement, system monitoring, and control. Measurements
rates up to 60Hz are supported by current PMU technology. As
deployment of PMUs increases the number of measurements
and quantity of data increases substantially from traditional
SCADA measurements which have far fewer measurements
and a slower update rate (on the order of seconds to minutes
depending on the sensor). A key research area in smart grids
is how to handle this increase in data effectively and provide
meaningful information to grid operators and controllers. Prior
work has leveraged parallel computing as a solution to rapidly
process raw PMU data in near real-time [2]. The primary smart
grid application of this work was a model free methodology of

978-1-5386-2534-7/17/$31.00 ©2017 IEEE

processing raw PMU data for anomaly detection. Anomalous
conditions were specifically defined apriori for this process.
Raw PMU data was scanned and any detected anamolies
flagged and reported in near real-time. This information can
provide rapid feedback to grid operators and provide informa-
tion to other downstream WAMS and WACS.

The work presented in [2] investigated two types of anoma-
lies within raw PMU data: constraint and temporal anomalies.
Constraint anomaly detection monitors PMU data at spe-
cific time slices and evaluates if voltage magnitude, current
magnitude, and frequency is within acceptable predetermined
limits. Temporal anomaly detection monitors PMU data across
a specified time window and detects if any unacceptable
temporal variation occurs. For example, a rapid decrease in
voltage that could be indicative an event within the power
grid. Experimental results showed that the proposed anomaly
detection approach could detect both temporal and constrain
anomalies from a dataset consisting of 18 million measure-
ments in under three seconds on an eight core workstation.
This is representative of near real-time performance from
4,500 PMUs installed in a power grid.

In this paper, we investigate the applicability of a Raspberry
Pi microcluster for anomaly detection and compare to a
multicore workstation. A “microcluster” is a small, compact
cluster of single board computers. For simplicity, we only look
at the performance of the cluster on constraint anomalies. We
compare the performance of our cluster to a quad-core mul-
ticore server, using a real dataset consisting of approximately
1 measurements and 8 PMUs, derived from a 1000:1 scale
emulation of a working power grid. PMU data is aggregated
and time aligned by a phasor data concentrator and then sent
to the cluster for anomaly detection. Our results show that 8
nodes of our Raspberry Pi microcluster can detect anomalies
at the same rate as our multicore server. This lends credence to
the idea that a microcluster can be used for anomaly detection
in the power grid.

The rest of the paper is organized as follows. Section
IT provides an overview of related work regarding parallel
computing for smart grid applications. Section III outlines our
methods in this work to include experimental data, anomaly
detection algorithm, and implementation. This is followed by
results and conclusion in sections IV and V respectively.

TABLE I
RASPBERRY P12 CLUSTER COST BREAKDOWN.

Component Cost p/Unit Total
Raspberry Pi 2 nodes (28) $35.00 $980.00
5V (20A) power supply (2) $39.95 $79.90

8GB MicroSD card (28) $5.98 $167.44
Case Components (28) $5.00 $140.00
Ethernet Cables (28) $2.00 $56.00
Router (1) $20.00 $20.00
16-port 10/100 switch (2) $48.47 $96.94
Powered USB hub (1) $22.93 $22.93
Cooling fan (2) $15.00 $30.00

1 TB USB SSD (1) $50.00 $50.00

TOTAL $1,643.21

II. RELATED WORK

Several researchers [2]-[5] have explored using paral-
lel computing for applications related to the smart grid.
For anomaly detection, researchers have typically used
Hadoop [6], a cluster computing framework that leverages
MapReduce. While Hadoop clusters have been successfully
used by the Tennesee Valley Authority (TVA) for historical
analysis of anomalous events [7], it has been less successful
for anomaly detection at a smaller scale [8]-[10]. This raises
the question if a cluster is needed to do anomaly detection in
a localized setting.

In 2017, Matthews and St. Leger presented two multicore
MapReduce algorithms to detect anomalies on a real dataset of
18 million measurements [2]. The authors used the Phoenix++
MapReduce framework to implement their algorithms on mul-
ticore architectures, and found that they could detect anomalies
in under three seconds on a quad-core system. Their work
showed that a large cluster was not needed to achieve anomaly
detection at near real-time speed.

In a separate paper, Matthews et al. studied the efficacy of
single board computer (SBC) clusters for compute-intensive
cyber applications [11]. A single board computer is a computer
which is printed entirely on a single circuit board; a Beowulf
cluster can be created from a set of these devices. In their
paper, Matthews et al. experimentally demonstrate how two
inexpensive SBC clusters can outperform a high-end laptop
for a password cracking application. They argue that SBCs
clusters may be a power-efficient alternative for many cyber
applications, and their use for the rapid detection of alarm
events in ICS/SCADA systems [11].

Our paper presents a prototype that demonstrates the utility
of a Raspberry Pi microcluster for anomaly detection in the
Smart Grid. To the best of our knowledge, we are the first
group of researchers to use a Raspberry Pi cluster for this
application. To test our approach, we compare the performance
of our algorithm on a 28-node Raspberry Pi cluster and
compare it to its performance on a multicore server.

In addition of building on the work of other researchers [2],
[11], our work explores the notion of “energy-proportional
computing” [12], which argues that CPU utilization on systems
should be close to 100% to maximize their energy efficiency.
Raspberry Pi cores are relatively weak compared to those

978-1-5386-2534-7/17/$31.00 ©2017 IEEE

Fig. 1. Picture of Raspberry Pi 2 Cluster

found in typical multicore workstations. However, we predict
that many Raspberry Pis will outperform a multicore worksta-
tion at the task of anomaly detection while achieving greater
power efficiency and lower cost.

III. METHODS

Table I gives an overview of the cluster we used for analysis.
Our cluster is composed of 28 Raspberry Pi 2 nodes and costs
roughly 1,650.00 to build. Using a Kill A Watt meter [13], we
determined that the cluster consumes approximately 120 Watts
at peak CPU loading. The cases components were 3-D printed
using open-sourced Raspberry Pi case materials [14]. A picture
of our assembled cluster is shown in Figure 1. Each node can
communicate with others using the Message Passing Interface
(MPI) [15]. A 1 TB solid state hard drive is mounted for the
network file system. Each Raspberry Pi has a 900 MHz ARM
v7 processor and 1 GB of RAM. Each Pi consumes roughly
4.25 Watts of power peak, and runs Raspbian Linux.

We compare our performance to a Dell 9010 lab workstation
running Red Hat Enterprise Linux with 32 GB of availalbe
RAM. The CPU consists of a quad-core Intel i7-3770 pro-
cessor @ 3.4 GHz. Due to hyper-threading, the workstation
has 8 virtual cores. The system cost approximately $1,200.00
dollars when it was purchased in 2014, and consumes roughly
80 Watts of power.

While the multicore workstation is a beefy (yet lower cost)
system, our research goal was to determine if the 28-node
Raspberry Pi cluster (or a subset thereof) could offer the same
anomaly detection performance achievable on our multicore
lab workstation at a fraction of the total cost.

A. Experimental Data & Implementation

For this paper, we concentrated solely on constraint anoma-
lies. That is, anomalies that occur outside a given window of
allowed variation on the power grid [2]. Experimental data
and our definitions of constraint windows was gathered from
a 1000 : 1 scale emulated three-phase distribution power grid
located at West Point [16]. The system is implemented with
7 buses, 9 transmission lines, and contains real measurement
devices, such as Phasor Measurement Units (PMUs), and real
voltage/current tranducers.

5:47PM,
core —A_VOLT, 5:47PM, 24017

A_CURR, 5:47PM, 2419
B_VOLT, 5:47PM, 26128

I

core | —+A_CURR, 5:47PM, 2419

Measurement Memory-Mapped on Node Multicore Detected Anomalies

File Algorithm

Fig. 2. Overview of Anomaly Detection (1 Node)

The rated line voltage and line currents of the system are
46 V and 2-Amperes respectively; constraint windows were
derived directly from these specifications. For example, during
normal operating procedures, voltage should not vary more
than +5% of the expected value (26.3 kV). Likewise, current
should never exceed 2000 mA.

We use the emulated power grid to gather approximately
= 1 million real measurements (318 MB) of PMU data. While
the MapReduce approach described by Matthews and St. Leger
leveraged a dataset of 18 million measurements, we were
limited to a smaller dataset for our experiments due to memory
restrictions on the Raspberry Pi.

Initially, we attempted to port the Phoenix++ MapReduce
algorithm described by Matthews and St. Leger to the Rasp-
berry Pi. However, we discovered a fundamental incompat-
ibility between Phoenix++ MapReduce framework and the
ARM architecture of the Raspberry Pi, forcing us to abandon
Phoenix++. Since re-implementing MapReduce was beyond
the scope of this project, we opted to implement a simpler al-
gorithm using POSIX threads (Pthreads) on our Pi cluster. We
also measure the performance of our Pthreads implementation
on the multicore server and compare the results.

B. Algorithm

Figure 2 gives an overview of our anomaly detection ap-
proach, on a single node system with 2 cores. The multicore
workstation follows a very similar workflow to that depicted
in Figure 2, except our workstation has 4 physical cores. For
our Pi cluster, each node receives its own measurement file.
For simplicity, we do not depict the “constraint” file which
each node takes as input. The constraint file lists , for each
measurement type, the window of allowed variation for that
measurement. We note that while in Figure 2 individual mea-
surements are are shown as a text descriptor (e.g. B_CURR),
in reality they are each a hash. Measurements that should be
identified as anomalous are highlighted in red.

Each node begins by loading the constraint file into a
hashtable which it stores in shared memory. Each node then
reads its assigned measurement file and memory maps it to
make it available to all the cores on the node. We then spawn
threads equivalent to the number of cores on the system, and
assign each core an equally-sized segment of the memory-
mapped file, according to thread id. In Figure 2 our system
has two cores, so we spawn two threads, with each thread
assigned two measurements.

Next, each thread linearly scan its assigned segment for
anomalies, using the shared hashtable to determine the allowed
constraint window for the particular measurement. For exam-

978-1-5386-2534-7/17/$31.00 ©2017 IEEE

Cluster

Time {s)

e i

4 8 12 16 20 24

Number of Nodes

Fig. 3. Cluster Performance Compared to Multicore

ple, the first core compares the 2_VOLT measurement with
the associate range of values for voltages, and finds that it
falls outside the allowable range. Thus, this measurement is
outputted as an anomaly to the user. When it compares the
B_CURR measurement to the allowable window however, it
finds that it is OK. Thus, the measurement is silently ignored.
In parallel, the second core compares the A_CURR measure-
ment to the allowable window for current, and discovers that
it is too high. Therefore, this measurement too is emitted to
the user as anomalous.

The algorithm follows the classic single program, multiple
data (SPMD) model for threaded applications. Let M be the
number of measurements, n be the number of nodes, and
c be the number of cores on each node. For the multicore
workstation, the amortized run-time of our algorithm is simply
O(2L). For a cluster, the measurement file may first need to be
split into n subfiles each containing % measurements, which
requires approximately O(M) time. Thus, the time to process
each file for anomalies should take approximately O(%) time.

IV. RESULTS

We first ran our Pthreads implementation on the multicore
workstation and a single rapsberry pi. The algorithm was run
three times, and the average time (in seconds) was recorded.
One a single core of the workstation, the algorithm took 2.03
seconds to process our dataset. On four cores, the algorithm
took 1.02 seconds. In contrast, the Pthreads implementation
took 25.48 seconds on a single core of the Raspberry Pi, and
8.56 seconds on four cores of the Raspberry Pi. These results
are completely unsurprising, as our multicore lab workstation
is much more powerful than a single Raspberry Pi.

Figure 3 show the results of experimentation with Rasp-
berry Pi cluster. The horizontal line represents the multicore
workstation’s time on four cores, 1.02 seconds. The x-axis
of the plot depicts the number of nodes in the cluster we
ran the contraint algorithm on, while the y-axis depicts the
average time (in seconds) it took to process our dataset. Each
bar represents the average of three runs when using all four
cores of the Raspberry Pis.

When using two Raspberry Pis, the run-time of our con-
straint algorithm drops to 3.91 seconds on average. Increase
the number of Raspberry Pis to four reduces the run-time
further to 2 seconds. At this point, the Pi cluster performs
on par with the workstation running the algorithm on 1 core.
Increasing the number of cores to 8 further reduces the run-
time to 1.14 seconds, which is close to the time it took the
workstation to process our dataset on 4 cores. From 12 cores
onward, the Raspberry Pi cluster outperforms the workstation,
requiring 0.77 seconds on 12 cores and 0.42 seconds on 28
cores.

Most striking about our results is the cluster’s ability to
outperform the multicore workstation using only 12 nodes of
the Raspberry Pi cluster. We estimate that an equivalent 12-
node cluster would cost approximately $750.00 and consume
approximately 50 watts of power, roughly the same as a laptop
computer. An 8-node cluster would be even more efficient,
costing approximately $550.00, and consuming approximately
34 watts of power as compared to the multicore workstation
which consumes 80 watts for similar performance.

V. CONCLUSIONS

In this paper, we discuss the use of a Raspberry Pi cluster
for detecting anomalies in the smart grid. Our goal was
to determine if a Raspberry Pi cluster could outperform a
multicore server for the task of detecting contraint anomalies.
We implement a novel multi-threaded algorithm and use a
real dataset of 1 million measurements from a 1000 : 1 scale
emulated power grid. We test our approach on a multicore
workstation and subsets of a 28-node Raspberry Pi cluster.
Our results suggest that 12 Raspberry Pi nodes are able to
outperform our multicore workstation, and 8 nodes offer on-
par performance.

Our results are meaningful for several reasons. First, we
show that a Raspberry Pi cluster can be used for the application
of anomaly detection in a smart grid. Second, we show that 12
nodes of our Raspberry Pi cluster is capable of analyzing data
at the same speeds as our quad-core workstation. The latter
is especially significant as the 12-node Pi cluster consumes
roughly the same power as a laptop computer. These results
suggest that Raspberry Pi clusters may be a more power-
efficient and cost-effective way to conduct anomaly detection
on local power grids.

There are many avenues for future research. First, we did
not measure the latency to transfer data between our power
grid and our Raspberry Pi nodes, or our workstation. It is very
possible that the amount of time it takes to transmit 318 MB
of data over the network may overshadow any benefit received
in fast performance. In the future, we will study this latency
in greater depth. Secondly, we also plan on implementing an
algorithm to detect temporal anomalies [2]. Lastly, we plan to
explore the Raspberry Pi 3 for future cluster experiments, as
the updated version is likely to offer better speedups.

978-1-5386-2534-7/17/$31.00 ©2017 IEEE

ACKNOWLEDGMENTS

Funding for this project was provided by the U.S. Army
Armament Research, Development and Engineering Center
(ARDEC). This work was completed as part of a year-long
undergraduate capstone project that Kasey Candelario and
Chris Booth worked together on. Special thanks to Mr. Robert
McKay of the Engineer Support Staff for his assistance in
assembling the Raspberry Pi cluster, and Mr. John Dwyer and
Mr. Jim Beck of the Computer Support Group for providing
cost and power estimates for the Dell workstation used in this
study. The opinions in this work are solely of the authors and
do not necessarily reflect those of the U.S. Military Academy,
the U.S. Army, or the Department of Defense.

REFERENCES

[1] NERC, “Real-time application of synchrophasors for improving realia-
bility,” Tech. Rep. 1, 2010.

[2] S. J. Matthews and A. St. Leger, “Leveraging mapreduce and syn-
chrophasors for real-time anomaly detection in the smart grid,” IEEE
Transactions on Emerging Topics in Computing, vol. PP, no. 99, pp.
1-1, 2017.

[3] J. C. H. Peng, A. Meads, and N. K. C. Nair, “Parallel computing for
smart power oscillation monitoring using synchrophasor measurements,”
in TENCON 2010 - 2010 IEEE Region 10 Conference, Nov 2010, pp.
657-662.

[4] M. Giuntoli, P. Pelacchi, and D. Poli, “Parallel computing of sequen-
tial montecarlo techniques for reliable operation of smart grids,” in
EUROCON 2015 - International Conference on Computer as a Tool
(EUROCON), IEEE, Sept 2015, pp. 1-6.

[5] S. Jin, Z. Huang, Y. Chen, D. Chavarria-Miranda, J. Feo, and P. C.
‘Wong, “A novel application of parallel betweenness centrality to power
grid contingency analysis,” in 2010 IEEE International Symposium on
Parallel & Distributed Processing (IPDPS). 1EEE, 2010, pp. 1-7.

[6] T. White, Hadoop: The definitive guide. O’Reilly Media, Inc.”, 2012.

[7]1 P. Trachian, “Machine learning and windowed subsecond event detection
on pmu data via hadoop and the openpdc,” in IEEE PES General
Meeting. 1EEE, 2010, pp. 1-5.

[8] M. Edwards, A. Rambani, Y. Zhu, and M. Musavi, “Design of hadoop-
based framework for analytics of large synchrophasor datasets,” Proce-
dia Computer Science, vol. 12, pp. 254-258, 2012.

[9] F. Bach, H. K. Cakmak, H. Maass, and U. Kuehnapfel, “Power grid time

series data analysis with pig on a hadoop cluster compared to multi core

systems,” in 2013 21st Euromicro International Conference on Parallel,

Distributed, and Network-Based Processing. 1EEE, 2013, pp. 208-212.

M. Khan, P. M. Ashton, M. Li, G. A. Taylor, I. Pisica, and J. Liu,

“Parallel detrended fluctuation analysis for fast event detection on

massive pmu data,” IEEE Transactions on Smart Grid, vol. 6, no. 1,

pp. 360-368, 2015.

S. J. Matthews, R. W. Blaine, and A. F. Brantly, “Evaluating single

board computer clusters for cyber operations,” in 2016 International

Conference on Cyber Conflict (CyCon U.S.), Oct 2016, pp. 1-8.

L. A. Barroso and U. Holzle, “The case for energy-proportional com-

puting,” Computer, vol. 40, no. 12, 2007.

(10]

[11]

[12]

[13] P3 International. (2005) Kill a watt - electricity usage monitor
[p3]. [Online]. Available: http://www.p3international.com/products/
p4400.html

[14] S. J. Matthews and W. Blackmon. (2015) Raspberry pi case and cluster
files. [Online]. Available: https://www.thingiverse.com/thing:892959
W. Gropp, E. Lusk, N. Doss, and A. Skjellum, “A high-performance,
portable implementation of the mpi message passing interface standard,”
Parallel computing, vol. 22, no. 6, pp. 789-828, 1996.

A. St. Leger, J. Spruce, T. Banwell, and M. Collins, “Smart grid testbed
for wide-area monitoring and control systems,” in 2016 IEEE/PES
Transmission and Distribution Conference and Exposition (T D), May
2016, pp. 1-5.

[15]

[16]

