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Abstract—Animal conservationists need unobtrusive methods
of observing and studying wildlife in remote areas. Many
commercial options for wildlife observation are expensive, ob-
trusive, or sub-optimal in remote environments. In this paper,
we explore the viability of a Raspberry Pi-based camera system
augmented with a deep learning image recognition model for
detecting wildlife of interest. Unlike traditional sensor nodes
that would have to transmit every captured image, localized
image recognition enables only pictures of desired animals to
be transferred to the user. For the purposes of this study, we use
TensorFlow and Keras to create a convolutional neural network
that runs on a Raspberry Pi 3B+. We trained the model on nearly
3,600 images gathered from publicly available image databases
that are split into three classes. Our experiments suggest that
our system can detect snow leopards with between 74 percent
and 97 percent accuracy. We believe that our results show the
viability of employing deep learning image recognition models
on the Raspberry Pi to create an inexpensive system to observe
wildlife.

Index Terms—Raspberry Pi, single board computer, deep learn-
ing, convolutional neural network, TensorFlow, Keras

I. INTRODUCTION

Wildlife conservationists often require inexpensive methods

for monitoring wildlife. This is especially true in remote areas,

where direct human observation is not always possible. In

cases where the animal in question is shy of humans, camera-

equipped systems allow conservationists and scientists to gain

a richer picture of animal habits and behavior. Conservationists

currently use a combination of traps, cameras and robots to

observe wildlife. However, traps are often inappropriate for

megafauna. While robots (such as unmanned ground/aerial

vehicles) are a useful substitute for human observers [1], [2],

they can inadvertently startle animals and/or cause stress or

harm [1], [3]. While camouflage and selecting appropriate ma-

terial in robotic design can minimize disruption to species [2],

this in turn increases the expense of the system.

Modern trail cameras represent a more cost-effective option

for observing wildlife and typically cost between $100.00 to

$400.00 per camera. Sophisticated models can detect motion
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and transmit pictures and video over cellular networks. How-

ever, such cameras may be inappropriate in remote environ-

ments where cellular signal is not available. Most crucially,

trail cameras take pictures of whatever triggers the camera,

requiring the scientist to manually shift through all pictures to

determine if a particular species of interest was detected.

Inexpensive single board computers such as the $35.00
Raspberry Pi offer a more cost-effective option for observing

wildlife. Researchers have successfully demonstrated how

single board computers like the Raspberry Pi can create cost-

effective acoustic monitoring devices. For example, Solo [4]

is a bio-acoustic monitoring device built on the Raspberry Pi.

Researchers have also used the Raspberry Pi to monitor birds

in Kenya [5] and marine mammals off the coast of Brazil [6].

More recently, a Raspberry Pi-based wireless sensor net-

work for observing an area for wildlife was proposed [7],

[8]. However, a key weakness of the proposed system is

that all captured images are automatically sent to the user.

This presents a problem if the images being captured do

not contain the animal of interest, forcing the conservationist

to sift through extraneous images. Furthermore, excessive

transmission of data can deplete battery life.

In this paper, we explore the efficacy of the Raspberry Pi to

automatically and visually detect wildlife using deep learning.

We focus on snow leopards for the purposes of this project.

Snow leopards are especially interesting for conservationists

due to their notorious shyness. We build a deep learning model

that attempts to classify images as containing snow leopards,

humans, or “other” (empty background). To mimic how a

conservationist with no domain-based knowledge would build

such a model, we deliberately built our model using publicly

available software, databases and tools. Our model is based on

a convolutional neural network (CNN) built using TensorFlow

and Keras. The model is trained using images procured from

the publicly available ImageNet [9] and VIPeR [10] databases.

Our experiments show that we can detect snow leopards

with at least 74 percent accuracy, and that image classification

occurs at acceptable speeds for real-time processing. Our

results suggest that a Raspberry Pi-based camera system aug-

mented with a deep learning model can assist in conservation

efforts. Since our image recognition technology is built with

free software and tools, adding a deep learning model to theU.S. Government work not protected by U.S. copyright



Fig. 1. Raspberry Pi 3B+ single board computer.

Pi does not increase the overall cost of the system. We hope

our work will assist conservationists interested in exploring

the Raspberry Pi for camera-based monitoring of wildlife.

II. BACKGROUND AND RELATED WORK

The Raspberry Pi (Figure 1) is a popular single board com-

puter that was initially released in 2012 and has been widely

used for numerous applications, including computer science

education [11]–[14], robotics [15], sensor networks [7], [8],

[15] and internet-of-things [16]. More recently, researchers

have begun to explore the Raspberry Pi for image recognition.

For example, researchers [17], [18] successfully deployed

the Daugman algorithm [19] for iris detection on Rasp-

berry Pis. However, the Daugman algorithm itself does not

depend on machine learning. Researchers have also used

Raspberry Pis extensively with the Open Source Computer

Vision (OpenCV) package and Adaptive Boosting (AdaBoost)

for various applications, include augmenting street lights with

object detection [20], traffic sign recognition [21], face recog-

nition [22], and human emotion recognition [23]. Raspberry

Pis have also been used for cloud-based image recognition

for use in law enforcement [24]. The Raspberry Pi in the

aforementioned project transfers captured images to the cloud,

which serves as the actual site of image recognition.

Unlike most prior work, we use a convolutional neural net-

work (CNN) to generate our image recognition model. While

CNNs are an extremely popular for image classification [25],

[26], there is very little prior work deploying CNNs on Rasp-

berry Pis, largely due to the limited processing power of older

models of the Raspberry Pi. To mitigate this issue, researchers

typically train their CNN on a separate (more powerful)

machine prior to off-loading the model onto the Raspberry

Pi for use. For example, researchers from Brazil [27] explored

CNNs for aerial person detection on the Raspberry Pi 2. While

CNNs showed substantial promise, the researchers concluded

that the Raspberry Pi’s processing power was insufficient

for many of the applications they explored [27]. Another

set of researchers [28] compared different types of CNNs

on the Raspberry Pi 2 for traffic sign classification. The

researchers concluded that a CNN built with a combination of

TensorFlow [29], [30] and Keras [31] yielded the best results

on the Raspberry Pi. However, they also cautioned readers that

the processing power of the Raspberry Pi 2 limited its ability

support memory-intensive models [28].

In this paper, we deliberately use free or widely available

components to mimic how a conservationist will use the

system. For example, the use of the inexpensive Raspberry Pi

as a platform drastically reduces the cost of the camera sensor

system, making it easy for scientists to cheaply deploy units.

Based on the results of prior work, we choose the Raspberry

Pi Model 3B+ (shown in Figure 1) as our single board

computer of choice. The Raspberry Pi 3B+ has a 1.4 GHz

ARM A53 Processor, 1 GB of RAM and integrated wireless

and Bluetooth capabilities.

The wide availability of open-source materials make it pos-

sible for conservationists to train their own image recognition

models for Raspberry Pis. We choose TensorFlow [29], [30]

and Keras [31] for their relative ease of use, freely availability,

and (as of August 2018) native support on the Raspberry Pi.

TensorFlow implements a variety of machine learning and

deep learning algorithms (including CNNs), and allows users

to access a variety of tools in order to create models and

deploy machine learning robustly and easily. Keras is a high-

level neural network API that runs on top of TensorFlow and

allows users with little experience to quickly code and create

models using different sources of data.

We train the model using pictures from the publicly avail-

able ImageNet [9], [32] and VIPeR [10] databases. Ima-

geNet [9], [32] is a well established image database for

learning applications that is curated by Stanford University.

ImageNet sorts images by category, with each category con-

taining hundreds to thousands of pictures. The repository

allows users to easily find, download, and utilize large numbers

of images for use in supervised learning of different classes.

The Viewpoint Invariant Pedestrian Recognition (VIPeR) [10],

[33] is an image data set containing pictures of pedestrians

(human) from different viewpoints and under varying lighting

conditions. The data set is provided by the University of

Santa Cruz to evaluate the performance of models in modern

surveillance systems. We strongly believe that scientists can

reproduce our results and cheaply train their own models by

using the database and procedures described in this paper.

III. METHODS

To mimic how a conservationist would build the model,

we use an online tutorial [34] to build a CNN. The tutorial

includes code that allows for dynamic creation of an image

recognition model using a CNN with two convolutional layers.

For the purposes of this study, we focus on distinguishing

between snow leopards and humans. We also have a third cate-

gory (“other”) that accounts for situations where the Raspberry

Pi detects motion, but the captured image contains nothing of

interest.

At a high level, the code first creates a sequential model

and adds a 2-D convolution layer with 32 feature layers and

a 3 × 3 feature detector with a stride length of 1. A second

2-D convolutional layer with 64 feature layers with a 3 × 3
feature detector is added with a rectified linear unit (ReLU)



Fig. 2. Sample images used for training (human, snow leopard, and other).

activation function. Max pooling is added to both layers to

reduce the total set of features. The layers are flattened and

used as input to a linear/dense layer with 128 input units and a

ReLU activation function. The model then drops 20 percent of

the inputs and is fed into a last linear/dense output layer. The

last layer uses a softmax activation function to support three

different dimensions (representing “snow leopard”, “human”

and “other”). The model is compiled with the ADADELTA

optimizer [35] and a categorical cross-entropy loss function,

where the latter is used to support the three image classes.

We generate a dataset of images using 1, 262 pictures

of humans pedestrians from the VIPeR database [10], and

1, 568 pictures of snow leopards and 768 pictures of natural

background environments (for the “other” category) procured

from ImageNet [9] database. The natural backgrounds used

for our classification are mainly green forest, since most of

the collected snow leopard pictures are from zoos, where

they are typically kept in forest-like enclosures. The collected

images are split into three categories (classes): “snow leopard”,

“human” and “other”. Figure 2 shows an sample image from

each of the three image classes.

The collected image sets are split into three further sets: a

training set containing 80 percent of each category, a testing set

containing 10 percent of the images from each category, and a

validation set containing the remaining 10 percent of images.

There is no overlap between the images in the training, testing

and validation sets. A training data generator is instantiated

with a random variety of image sheer, rescaling, zooming,

and horizontal flipping to make the training images more

diverse. A test data generator is also instantiated and linked

to the directory containing the test images. Unlike the training

images, the test images are only re-scaled to fit the model and

are not modified any further. The model is trained and tested

over 10 epochs with 250 steps and 150 validation steps.

We build the model on a Dell Latitude 7350 laptop that

has a 64-bit Intel(R) Core(TM) M-5Y71 1.2 GHz CPU,

8 GB of RAM and runs the Windows 10 operating system.

Anaconda [36], a free popular Python package for scientific

computing, is used in conjunction with the TensorFlow and

Keras packages. We also use the Jupyter [37] package to create

image recognition models easily with the Keras API and Ten-

sorFlow back-end. The model takes about 35 minutes to build

and is approximately 19 MB in size. Lastly, we export the

completed model to the Raspberry Pi 3B+ for experimentation.

We note that as an additional step, TensorFlow and Keras need

to be installed on the Raspberry Pi.

Accuracy =
TruePositive+ TrueNegative

Total
(1)

Precision =
TruePositives

TruePositives+ FalsePositives
(2)

Recall =
TruePositive

TruePositive+ FalseNegative
(3)

We measure the quality of our results using accuracy,

precision, and recall. Accuracy (Equation 1) is the number

of correct identifications divided by the total number of

predictions. Precision (Equation 2) is the total number of

correct positive identifications of an class divided by the total

predicted positive identifications of that class, both correct and

incorrect. Lastly, Recall (Equation 3) or Sensitivity is the total

number of correct positive identifications of a class divided by

the total number of elements in that class.

IV. RESULTS

To assess the efficacy of the approach, we run two different

set of experiments on the Raspberry Pi. In both sets, we run

the model on the Raspberry Pi 3B+ against images in the

validation set to classify each image as either “snow leopard”,

“human” or “other”. In the first set of experiments, we

download images in the validation set directly to the Raspberry

Pi 3B+ prior to classification; this set of experiments is referred

to as “pre-downloaded”. In the second set of experiments, we

attach an Adafruit Raspberry Pi Camera [38] to the Raspberry

Pi to capture “live” images and classify each image in real-

time. This second set of experiments is referred to as “live

capture”. In both sets of experiments, the model prints the

classification to the console. We note that in a fully integrated

system, logic can be added to enable the Pi to automatically

delete, save, or transmit images to the user. Lastly we project

the cost to build the Raspberry Pi camera sensor node, measure

its power usage, and estimate its battery life.

A. Pre-downloaded image experiments

In our first set of experiments, we test the model against the

validation set of 122 images of humans, 150 images of snow

leopards, and 75 images of natural backgrounds for a total

of 347 images. The model is tested on the Raspberry Pi 3B+

and the corresponding results are shown in Table I. In this

intial set of experiments, we are able to achieve 97 percent

accuracy in identifying snow leopards, 99 percent accuracy

in identifying human subjects, and 96 percent accuracy in

identifying empty background pictures. Recall is very high

across all three classes, while precision is very high for snow

leopards and humans.

While our initial set of results are promising, we notice

that there are several limitations to this experiment. First, the

VIPeR images in the human validation set consist of direct

front and side profiles and people without any background.



TABLE I
PRE-DOWNLOADED IMAGE TESTING RESULTS

Snow Leopard Human Other
Accuracy 0.97 0.99 0.96
Precision 0.99 1.00 0.85

Recall 0.94 0.96 0.99

Fig. 3. An image the model incorrectly classifies at “other”.

In contrast, the “snow leopard” and “other” categories have

images with greater diversity, including different lighting con-

ditions and larger backgrounds. As a result, when the model

misclassifies images, it tends to group them in the “other”

category. We note that the “other” category has the lowest

precision value at 85 percent.

Figure 3 gives an example of an image that our model

misclassifies as “other”. In this particular image, the snow

leopard is hiding behind a tree branch. We notice that our

model struggles to identify images that are majority green

foliage or in cases where the subject is not taking up the

majority of the image frame.

We measure the amount of time image classification takes

on the Raspberry Pi on the pre-downloaded image set. As

noted in Section II, much prior work [27], [28] expressed

concern about the limited processing power of older Raspberry

Pi models. However, our results over five runs show that it

takes only 29.2 seconds on average to classify 347 images

on the Raspberry Pi 3B+. We note that roughly 55 percent

of that time is devoted to starting up Tensorflow and Keras

on the Pi and loading the model. Once the model is loaded

and the TensorFlow/Keras backend starts up, it takes only 13
seconds to classify all 347 images, or roughly 0.03 seconds

per image. The alacrity at which images are classified suggests

that the Pi 3B+ has sufficient processing power for real-time

classification of images.

B. “Live capture” image experiments

We also test the model using “live” image capturing using

an Adafruit Raspberry Pi camera. Again, all experiments are

conducted on a Raspberry Pi 3B+. As actual snow leopards are

unavailable for our assessment, we simulate “live” capture by

printing out 40 images from each class of the validation set and

TABLE II
“LIVE” IMAGE TESTING RESULTS

Snow Leopard Human Other
Accuracy 0.74 0.77 0.72
Precision 0.57 0.95 0.63

Recall 0.97 0.41 0.53

holding each up to the camera at a distance of approximately 4
inches. The output of the decision is recorded for each image

and Table II shows the accuracy, precision and recall achieved.

On the “live capture” set of experiments, we achieve 74
percent accuracy for snow leopards, 77 percent accuracy with

humans, and 72 percent accuracy for the “other” category.

Snow leopards have the highest recall with 97 percent, but

the lowest precision value, suggesting that there were humans

or empty background that were categorized as snow leopards.

Conversely, the human class had a very high precision value,

but low sensitivity, reflecting that many were misclassified

as being snow leopards or other. In a real-world scenario

(where the Pi is set to transmit all images classified as snow

leopards), we hypothesize that the system would transmit most

snow leopard pictures, plus several additional images that were

incorrectly classified as snow leopards.

There are several limitations to this experiment. First,

the model is attempting to classify pictures of print-outs

of collected images rather than raw subjects. The loss in

resolution makes it harder for the model to identify colors

and lines as accurately as if it were dealing with an actual

subject. Furthermore, the resolution of the pictures taken by

the Adafruit Raspberry Pi camera [38] may be of lower quality

than those used to train the model. However, we note that

higher quality cameras are available for the Raspberry Pi such

as the Pimoroni CAM008 [39]. Lastly, the images held up to

the camera may not have been perfectly flush with the limits

of the camera causing it to analyze the background of the

paper which may have led to misidentification. Field testing

is ultimately needed to fully assess the quality of a Raspberry

Pi camera sensor node.

Lastly, we also measure the amount of time “live” testing

takes on the Raspberry Pi 3B+. The system, once started,

takes a picture every second and runs it against the loaded

model for classification. This process continues in a loop until

the classification mechanism is exited or the system is shut

down. Consistent with our pre-loaded images experiments,

loading the model and starting up TensorFlow/Keras takes

up the majority of the time, or approximately 16.3 seconds.

However, we note that this is a one-time start-up cost. Once

the camera starts taking pictures, the classification process

is instantaneous, taking roughly 0.12 seconds to classify

each picture. Our experiment, while imperfect, reinforces our

hypothesis that the Raspberry Pi 3B+ is capable of doing real-

time image classification in the wild.

C. Projected Cost of Sensor Node

The cost to build our Raspberry Pi-based camera system

is shown in Table III. The proposed camera system consists



TABLE III
ESTIMATED COST OF RASPBERRY PI CAMERA SYSTEM

Item Cost
Raspberry Pi 3B+ $35.00

Raspberry Pi Camera Module $5.00
16 GB microSD Card $4.50

4 AA Batteries $2.00
AA Battery Holder with Micro USB Cable $3.00

Total $49.50

of a Raspberry Pi 3B+, a Raspberry Pi camera module, a

16 GB microSD card, and a power source such as four AA

batteries in a holder to provide power. The total estimated

cost of the camera sensor node is $50.00. This is a more

realistic option for mass deployment of cameras compared to

the trail cameras which can cost upwards of $100.00. Using

our method, conservationists can deploy two Raspberry Pis

with image detection capability for every trail camera that does

not have any image recognition capability.

We measured the power consumption of our camera system

using a KillAWatt [40]. The Raspberry Pi running without

image recognition consumes 0.08 Amperes of current. When it

is taking pictures and running an image recognition model (as

in the “live” testing environment) it consumes 0.10 Amperes.

With a power supply of four Alkaline AA batteries (≈ 2, 000
milliampere hours each), the Raspberry Pi is estimated to last

for 10 hours in “live” mode. This is long enough for a single

day or night of observation. We note that the Raspberry Pi will

likely last longer with more expensive rechargeable batteries,

enabling conservationists to leave the camera systems isolated

for longer periods of time. A weather-proof enclosure can

be constructed from readily available parts, and there are

tutorials [41] online to aid a conservationist in creating one.

V. CONCLUSIONS AND FUTURE WORK

This paper discusses the construction of a deep learning

image recognition model to aid with inexpensive wildlife

conservation efforts in remote environments. Our prototype is

created using open source software and methods and leverages

the $35.00 Raspberry Pi 3B+ single board computer to make

deployment as inexpensive as possible. To reproduce our

work, a conservationist needs only a laptop and the necessary

hardware (Table III) to assemble a Raspberry Pi camera sensor

node. We use a simple convolutional neural network whose

code is available online [34] to build our model, reflecting the

process that a conservationist with no domain knowledge of

machine learning would follow. Despite the relative simplicity

of our model, the Raspberry Pi 3B+ detects snow leopards

with 97 percent accuracy with images from the validation set

downloaded onto the Pi, and 74 percent accuracy when tested

with “live” capture from an attached Adafruit Pi camera. Each

camera sensor node costs approximately $50.00 to build. Our

power experiments suggest that the unit can be powered with

four AA batteries over a ten hour period.

We note that our work is not without limitations. Currently,

our model is trained to recognize humans, snow leopards, and

empty backgrounds reflecting an outdoor, wooded environ-

ment containing mostly green foliage. Almost all the snow

leopard pictures were taken inside of zoos or enclosed areas

which keep the snow leopards in such environments. However,

the natural environment of snow leopards is mountainous,

rocky and mostly barren. It is very difficult to observe snow

leopards in their natural habitat so the number of images

available is limited. We also note that the model had difficulty

recognizing snow leopards if the animal was obscured or far

away, as shown in Figure 3. Lastly, better battery life can

likely be obtained by integrating the system with a motion

sensor, so that the camera only begins recording when motion

is detected.

However, we believe our results are very promising. The

use of open source deep learning tools in conjunction with

the Raspberry Pi suggests that any conservationist can use our

methods on their personal device to create a custom image

recognition model designed for animals they are interested in.

They can also tailor the backgrounds to resemble what they

would likely encounter in the environment they are deploying

the cameras in. Lastly, they can add their own photos into the

machine learning algorithm making for a better model. Our

run-time experiments also show that the latest model of the

Raspberry Pi (3B+) has sufficient processing power to classify

images in real-time. While starting up TensorFlow/Keras and

model loading can take nearly 30 seconds, this is a one-time

cost. Image classification itself takes a fraction of a second to

complete.

There are many avenues of future work. First, we plan

on improving our model by augmenting it with object de-

tection techniques to focus on animals of interest, reducing

the potential of misclassification when animals are far away

or hiding. We also plan to augment our model to detect

additional classes in more varied environments and add motion

sensing to help further conserve battery life. Most importantly,

we hope to get our model working on the recently released

Raspberry Pi Zero [42]. The challenge with this device is

its extremely limited memory and processing power, which

severely limits the size and complexity of models that can

be loaded on it. However, the Raspberry Pi Zero only costs

$10.00, consumes a fraction of the power of the Raspberry Pi

3B+, and would represent an even more inexpensive option

for conservationists.

Lastly, while this paper has focused on applications in

conservation efforts, we note that our results have implications

for any problem requiring inexpensive real-time image recog-

nition. We strongly believe that our results suggest that CNNs

can be successfully used for real-time image recognition on

Raspberry Pis, and represent a useful tool for conservation.
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