
Real-Time Regex Matching With Apache Spark
Sean Deaton†, David Brownfield†, Leonard Kosta†, Zhaozhong Zhu† and Suzanne J. Matthews∗

Department of Electrical Engineering & Computer Science
United States Military Academy, West Point, NY 10996

∗Corresponding Author, Email: suzanne.matthews@usma.edu
†Email: [sean.m.deaton.mil, david.c.brownfield3.mil, leonard.r.kosta2.mil, zhaozhong.zhu.mil]@mail.mil

Abstract—Network Monitoring Systems (NMS) are an im-
portant part of protecting Army and enterprise networks. As
governments and corporations grow, the amount of traffic data
collected by NMS grows proportionally. To protect users against
emerging threats, it is common practice for organizations to
maintain a series of custom regular expression (regex) patterns to
run on NMS data. However, the growth of network traffic makes
it increasingly difficult for network administrators to perform this
process quickly. In this paper, we describe a novel algorithm that
leverages Apache Spark to perform regex matching in parallel.
We test our approach on a dataset of 31 million Bro HTTP
log events and 569 regular expressions provided by the Army
Engineer Research & Development Center (ERDC). Our results
indicate that we are able to process 1, 250 events in 1.047 seconds,
meeting the desired definition of real-time.

Keywords: Regular Expressions, Parallel Computing, Apache
Spark, Bro

I. INTRODUCTION

Modern malware authors leverage a variety of techniques
to evade detection. One notable strategy is to develop cus-
tom string generation and mutation algorithms to create the
uniform resource identifiers (URIs) in HTTP requests. Thus,
Network Monitoring Systems (NMS) like Bro [1] play a
critical role in maintaining situational awareness on govern-
ment and corporate networks. Bro data is widely used for
analysis. A strength of Bro is its ability to export binary packet
streams to structured log data separated by application layer.
Moreover, the use of regular expressions (regexes) or patterns
is ubiquitous in the cybersecurity field for network and host-
based detection schemes.

Network defenders continually develop sets of regexes in
order to match URI mutations. For example, the pattern
.*<?(java|vb)?script>?.*<.+\/script>? detects
references to JavaScript or VBScript files. The computational
resources required to process each pattern is directly correlated
to the pattern’s complexity. Having multiple wildcards (i.e. .
and *) and length restrictors (i.e. ? and +) can increase the
resources required for pattern matching, and hinder overall
throughput [2].

Additionally, delays exist between when new malware is
found and when researchers have extracted the associated
patterns. Lastly, while it is possible to extend Bro with a set
of custom patterns through the use of Bro scripts, the process
is complex and often infeasible on distributed architecture.
In the case where multiple instances of Bro are deployed
on a network, the scripts will need to be updated on all
Bro instances (which can be difficult depending on the size

of the network) and may require the Bro instance to be
restarted, causing the NMS to potentially miss malicious
traffic. Furthermore, there may be a desire to run new patterns
on historical data to ensure that the system is not already
compromised. To instill such confidence, defenders typically
apply the pattern set against all data that passes through the
NMS as a post-processing step.

For large organizations with hundreds of thousands of users,
a system like Bro can log gigabytes of network traffic daily,
making it difficult to scan files quickly for malicious activity.
Thus, a parallel system that performs regex matching in real-
time is highly desirable. Our definition of real-time is provided
by network administrators at the U.S. Army Engineer Re-
search & Development Center (ERDC), who maintain Army
networks and sponsor our research. Real-time is defined as the
capability to process approximately 1, 250 events per second
under normal operations, and 2, 500 events during peak. Thus,
the immediate goal of our research is to design a parallel
system that can be integrated into ERDC’s workflow. More
broadly, our algorithm and results are of direct interest to any
organization that wishes to perform regex matching in parallel
on network traffic data.

In this paper, we describe a novel parallel algorithm that
leverages the Apache Spark [3] framework and MapReduce to
perform regex matching at scale on Bro HTTP log data. We
test our approach on an ERDC provided dataset of 31 million
real events and 569 sample regexes by performing two rounds
of experimentation. In the first round, we test our approach
on two randomly selected samples of 1, 250 and 2, 500 events
each. In order to better capture the types of events in the
original dataset, our second round of experiments covers
25, 600 random samples of 1, 250 events and 12, 205 random
samples of 2, 500 events. We test our approach on one node
of ERDC’s Topaz supercomputer in an effort to consume as
few resources as possible.

Our first round of experiments show that our MapReduce
algorithm can process 1, 250 and 2, 500 events in 0.385 and
0.427 seconds respectively on 36 cores. We also show that
we can process 12, 500 events in 0.837 seconds, and 15, 000
events in 1.024 seconds. Our second round of experiments
indicate that random samples of 1, 250 and 2, 500 events
require 1.047 and 1.591 seconds on average to process. The
results demonstrate that our algorithm is capable of meeting
ERDC’s real-time requirements.

We believe our work is an important first step in increasing

978-1-5386-3472-1/17/$31.00 ©2017 IEEE

Queue

Store in QueueNetwork Traffic Store as Event Logs
Apply Regular
Expressions Flagged Events

Monitor with Bro NIDS

Fig. 1. Anomaly detection workflow.

the DOD’s ability to perform regex matching at scale on
network traffic data. In addition to ERDC, we believe our
approach will be of significant interest to network adminis-
trators at other organizations who plan to enhance their own
workflows with parallel signature detection.

II. BACKGROUND

Apache Spark [3] is an open source parallel computing
framework that is designed to be scalable and easy to use. It
provides a platform for implementing parallel algorithms and
is widely considered the successor to Apache Hadoop’s [4]
MapReduce framework. Spark is extremely efficient; for
memory-intensive tasks, it is up to 100 times faster than
Hadoop [5]. This speedup is primarily due to Spark’s use
of Resilient Distributed Datasets (RDDs) and lazy evaluation
for reducing the cost of operating on large datasets. The
framework also supports additional processing paradigms be-
yond MapReduce. This flexibility and efficiency has prompted
several organizations to adopt Spark as their primary cluster
computing framework [5].

The concept of utilizing MapReduce frameworks to ana-
lyze log data is not entirely novel. Several researchers have
utilized Hadoop to try to quickly parse log data. Vernekar et
al. proposed utilizing a Hadoop MapReduce framework to
analyze log files on networks [6]. Events are initially mapped
by MAC address. The Reduce Phase uses the MAC address to
create separate log files for each machine. Lee et al. presented
performance analysis on Hadoop analyzing transport-layer
traffic on a network [7]. The team proved that Hadoop can be
leveraged to analyze terabytes worth of network traffic data.

While Hadoop proves to be a useful framework for log file
analysis, using Hadoop often requires transferring log data to
a dedicated Hadoop cluster, resulting in significant latency. To
remedy this, Logothetis et al. proposed a custom MapReduce
framework (iMR) to more efficiently process data logs [8].

Other researchers have begun exploring Apache Spark as
a way to reduce latency of log file analysis. Karimi et al.
recently proposed a system leveraging Spark, Spark SQL, and
Netmap to detect DDoS attacks in logged data [9]. They tested
their framework on the CAIDA dataset [10] and used a six-
node Spark cluster to analyze 5 GB of log data in under
3.17 minutes. More recently, Mavridis and Karatza compared
the performance of Hadoop and Spark on log file analysis
via SQL queries [11]. While Spark consumes more memory
than Hadoop, the researchers concluded that Spark is a better
MapReduce framework for log file analysis.

Marchal et al. [12] compared the performance of several big
data frameworks for anomaly detection on 767 MB of network

Fig. 2. Sample log file.

traffic data, including the use of substring matching to detect
malicious URIs. Their work concluded that Spark and Apache
Shark [13] were the two best performing frameworks for this
application. Our work extends the research of Marchal et al. by
demonstrating the utility of Apache Spark for regex matching
on a much larger dataset (5.7 GB).

Shahrivari [14] compared Hadoop’s and Spark’s perfor-
mance on regular expressions through Grep [15] on 40 GB
of HTML data. While serial Grep required 400 seconds to
complete, the Hadoop cluster required only 160 seconds. The
Spark cluster finished the task in one second. The work of
Shahrivari motivates our work in part, as it suggests that Spark
is a superior framework for regex matching at scale.

Böse et al. recently proposed a system for real-time anomaly
detection in heterogeneous data streams (RADISH) for de-
tecting insider threat [16]. They used Spark on a dataset of
430 million events from the CERT Insider Threat Center at
CMU’s SEI. Their team was able to process 230 events per
second on a single node. Like RADISH, our system also seeks
to perform real-time analysis on network traffic data using a
single node running Spark. Unlike RADISH, however, our goal
is to perform regex matching to determine external threats.

Lastly, we mention the fast uniform resource identifier-
specific filter (FARIS) by Takano and Miura [17], a byte-code
URL filtering tool. While FARIS is a regex matching tool, it
does not leverage Apache Spark or other big data frameworks.

To the best of our knowledge, we are the first to propose
a real-time system for regex matching of network traffic log
data using Apache Spark. Our unique contributions include:
1.) a MapReduce algorithm for regular expression matching
on network log data; 2.) experimentation on a real dataset of
31 million events and 569 regular expressions, both provided
by ERDC (big data problem); and 3.) the capability to process
1, 250 network traffic events in approximately one second by
leveraging Apache Spark on a single cluster compute node.

III. OUR APPROACH

Currently, Army installations log gigabytes of network
traffic each day. Network administrators and security analysts
lack the capability to analyze all of the traffic at line speed.
In the context of this work, we focus exclusively on Bro
HTTP log data. Figure 1 presents an overview of the anomaly
detection process. As network traffic data passes through Bro,
it is logged for historical record and loaded into a queue.
From the queue, the network traffic is analyzed as a series of
events, hereafter referred to as a “chunk”. These chunk sizes
correspond to network traffic targets requested by ERDC at
anticipated future “normal” (1, 250 events) and “peak” (2, 500

978-1-5386-3472-1/17/$31.00 ©2017 IEEE

event1, (regex1, regex2)

event3, (regex1)

eventn, (regex3)

event3: “regex1”

Reduce

Reduce

Reduce

event1: “regex1 regex2”

eventn: “regex3”

Event 1

Event 2

Event 3

Event n

Partition 1

Partition 2

Partition 3

Map

Map

Map

(event1: regex1)

(event1: regex2)

(event3: regex1)

(eventn: regex3)

CombinerChunk

Fig. 3. Overview of MapReduce algorithm.

events) load. To maintain pace with anticipated growths in
network traffic, each chunk needs to be processed in approxi-
mately one second. On each chunk, we apply our MapReduce
algorithm (described in Section III-A), which scans the chunk
with the specified set of regexes. If any regex is matched, the
associated event is flagged as being suspicious and outputted
in JSON format.

ERDC is still in the process of implementing the queue
architecture. Therefore we simulate the queue by creating
subsets of the Bro HTTP log files provided by ERDC, each
representing a separate chunk, and feeding these into Spark’s
Streaming API. A sample (truncated) log file is shown in
Figure 2. The files provided by ERDC are in tab-separated
values (TSV) format. Each line in the log file is a single event,
which is made up of several fields, including a unique event
ID, the origin IP address and port, the destination IP and port,
and so forth. The number of fields in the file is dependent on
Bro’s configuration; in our case, there are 35 total fields per
event. In this example, suspicious URIs have been marked in
red, indicating that they will be picked up by our approach.
In the examples that follow, events 1 and 3 will be labeled as
malicious.

Prior to running our MapReduce algorithm, Spark automat-
ically partitions the input log file, and caches the resulting
partitions, preparing the data for parallelization. Experiments
show that the best performance is derived when the number
of partitions is equal to the number of requested cores. Once
Spark computes this number, it divides the workload amongst
all of the cores on a particular node.

A. Algorithm

Figure 3 depicts our MapReduce algorithm. The input to
the algorithm is a.) a log file, representing a single chunk of
events, released from the queue; and b.) a list of regexes. In
this example, we consider a chunk of n events, 3 regexes, and
3 cores. Events 1, 3, and n will trigger our set of regexes.
For simplicity, our figure only depicts event matches. As we
discuss below, we inspect matched events further to determine
specific matched fields.

In the Map Phase, a chunk is split according the specified
number of cores, with each instance of the map function (or
mapper) receiving its own partition of events. The map phase
processes its set of events and outputs a series of (key, value)
pairs where the key is a particular event, and the value
indicates the regular expression and field it matched. In our
example, each mapper receives n/3 events.

Each mapper examines its assigned set of events using the
set of regexes. If a regex matches an event, the regex is run on
every field of the event to determine a precise match. While
we represent a match with regex i in the figure as “regexi”
this is in fact a larger structure containing not only the regex,
but the set of matching fields.

Returning to our example, event 1 has matches with the first
and second regexes in our input list (regex1 and regex2) in
mapper 1. This flagged information is passed to the combiner
as (key, value) pairs (event1, regex1) and (event1, regex2).
In mapper 2, event 3 is matched by the first regex, and is
emitted as the (key, value) pair (event3, regex1). In contrast,
event 2 is not matched by any of the regular expressions and
is ignored. Note that each mapper executes independently and
in parallel.

The (key, value) pairs of the flagged events are passed to
the Combiner, which aggregates them into (key, list(value))
pairs. All regexes that match a particular event are aggregated
together in a list. For example, regex1 and regex2 which both
matched event1 in the the Map Phase, are combined into the
(key, list(value)) pair (event1, list(regex1, regex2)). Note
that the Combiner runs concurrently with the Map Phase;
however, both the Map Phase and the Combiner must finish
executing prior to the start of the Reduce Phase.

In the Reduce Phase, each instance of the reduce func-
tion (or reducer) takes a set of (key, list(value)) com-
bined mappings and performs a reduction operation on
each to construct a final set of (key, value) pairs. In
this case, the information associated with each matched
regex is converted to a string, and all strings are concate-
nated together. In our example, reducer 1 receives as input
(event1, list(regex1, regex2)) and processes it to be the
final (key, value) pair (event1, “regex1, regex2”). In con-
trast, reducer 2 processes (event3, list(regex1)) to be simply
(event3, “regex1”). The (key, value) pairs output from the
Reduce phase are output to the user in a JSON dictionary
structure, which indicates each flagged event, matched regex
and field/URI.

B. Analysis

The run time of our algorithm on a particular chunk is
dependent on several variables: the number of events (n), the
number of regexes (r), the number of fields associated with
each event (f), the worst-case cost (L) to run a regex on an
event, and the number of cores (c). In the case that none of
the events match the set of regexes, the time required for the

978-1-5386-3472-1/17/$31.00 ©2017 IEEE

1 4 8 16 36
Number of Cores

0.5

1.0

1.5

2.0

2.5

3.0
T
im

e
 (
s)

1,250 events

2,500 events

Fig. 4. Processing Time on two randomly selected chunk of 1, 250 and 2, 500
events.

Map Phase would simply be O(n×r×L
c). In the worst case,

every event matches every regex. For every matched regex,
we reapply it to the set of fields for that particular event. In
the worst case, all of the fields match the regular expression.
Thus, our Map Phase requires at most O(n×r×f×L

c) time.
The Reduce Phase is much simpler. Observe that each event

has at most r × f possible matches. Thus, the total number
of matches that are passed to the reducer is n × r × f . It
follows that the worst case run time for the Reduce Phase
is O(n×r×f

c), making the total worst case run time of our
algorithm O(n×r×f×(L+1)

c), or simply O(n×r×f×L
c).

Note that the biggest influences on our run time are the
number of matching regular expressions, and the cost of
the most expensive regex, L. In cases where few regular
expressions match the events, the run time will approach
O(n×r×L

c). However, as regular expressions grow complex
(higher L) and there are more matches, the run time gets
steadily worse, increasing by as much as a factor of f .

We note that there were several key optimizations we
applied that are not fully captured in the above analysis.
First, we only check the set of fields if a regex matches an
event; while this does not improve our worst-case run time, it
does improve the average case. Next, all regexes are compiled
into regex objects using re.compile prior to running our
MapReduce approach. This significantly decreases the cost (L)
to run a regular expression on a particular event.

IV. EXPERIMENTAL SETUP

ERDC provided a dataset consisting of 31 million events
(5.7 GB) of HTTP traffic log data collected from Fort Hood,
Texas, and a sample of 569 regular expressions. The data was
collected over the course of a single day and was broken
into log files in TSV format, each spanning fifteen minutes.
The size of each log file depends on the amount of traffic
within those fifteen minutes. From the data, we estimate
that the current rate of network traffic that is collected is
between 300 and 400 events per second. Again, our goal is to
meet ERDC’s anticipated future rate of “real-time” processing,
which they define as approximately 1, 250 events per second
during normal operations and 2, 500 events per second at peak.

2500 5000 7500 10000 12500 15000
Number of Events

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ti
m
e
 (
s)

Fig. 5. Chunk size vs. running time.

Success is measured by the proximity our run times to one
second.

We test our approach on a single node of Topaz, a 3, 468-
node SGI ICE X supercomputer maintained by the ERDC
DOD Supercomputing Research Center. Each node consists
of a 36-core Intel Xeon E5-2699v3 Haswell processor at
2.3 GHz, with 117 GB of available RAM. To run our approach
on Topaz, jobs were submitted to the cluster using Portable
Batch Scripting (PBS) [18].

ERDC requested that we utilize only the 36 cores available
on one node to achieve our goal. This is in part due to the
large number compute-intensive projects that currently utilize
the Topaz cluster, a DOD shared resource. To minimize the
impact the regex matching piece has on other projects running
on the cluster, it was important that we use as few resources
as possible to accomplish our goal. By default, Spark will
run on all the cores of a node. To restrict this number for
our experiments, we changed parameters in the PBS scripts
submitted to Topaz.

Our experimentation is constrained by the set of provided
regular expressions and contents of the log files. Topaz was
also the only available HPC system that had Apache Spark
installed. All together, we consumed roughly 110, 000 hours
on the Topaz cluster over the course of this research.

V. RESULTS

We conduct two rounds of experiments to test the efficacy
of our approach. In the first set, we measure performance of
our algorithm on two random chunks of 1, 250 and 2, 500
events respectively, varying the number of cores from 1 . . . 36.
From there, we hold the number of cores constant at 36 and
increase the number of events in the chunk until we can no
longer processes the chunk in less than a second.

In the second round, we move to gather full scale coverage
of the Fort Hood log data. In order to accomplish this, we
generate several thousand chunks of random events derived
from the 31 million event log data. One set contains 25, 600
chunks of 1, 250 random events and the other contains 12, 205
chunks of 2, 500 random events. We compute the average run
time and show the percent distribution for each set of chunks.

978-1-5386-3472-1/17/$31.00 ©2017 IEEE

1 2 3 4 5 6 7 8 9 10
Time (s)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

N
o
rm

a
liz
e
d
 F
re
q
u
e
n
cy

Fig. 6. Normalized times for full-coverage Tests, 1, 250 events.

A. Initial Experimentation

Figure 4 shows the average time (in seconds) needed to pro-
cess two randomly selected chunks of 1, 250 and 2, 500 events
when we vary the number of cores on one node. On a single
core, the algorithm is capable of examining 1, 250 events in
1.372 seconds and 2, 500 events in 2.557 seconds respectively.
On 4 cores, the algorithm requires 0.516 seconds and 0.813
seconds to process 1, 250 and 2, 500 events respectively. Our
best times are achieved at 36 cores, where 1, 250 events are
processed in 0.385 seconds and 2, 500 events are processed in
0.437 seconds. This yields a maximum speedup of 3.77 on 16
cores for the 1, 250 event chunk, and 5.85 on 36 cores for the
2, 500 event chunk.

While we acknowledge that the speedup of the approach
leaves much to be desired, we emphasize that our goal for this
work was to process chunks of events as quickly as possible
and under one second on a single 36-core node, which we are
able to do. Motivated by these results, we conduct all further
experiments on a single Topaz node, utilizing 36 cores.

Next, we examine how well our algorithm scales as ERDC’s
data processing requirements grow. In other words, how many
events can we process in 1 second? Figure 5 shows the results
of our next set of experiments. We create chunks containing
between 2, 500 . . . 15, 000 events in increments of 2, 500. For
each chunk, we measured the time it takes our algorithm to
perform regex matching on 36 cores. The algorithm appears
to perform well as the chunk sizes increase. 10, 000 events
are processed in 0.743 seconds. 12, 500 events are processed
in 0.837 seconds. At 15, 000 events, we surpass the 1 second
barrier, requiring 1.024 seconds.

B. Expanded Experimentation

As noted in Section III-A, the run time of our method is
dependent on the number of matches and the complexity of
the regular expressions. Since we are constrained by the set
of regexes given to us by ERDC, we decided to expand on
the number of chunks we test in order to capture as diverse
a selection of events as possible. Each chunk in this set of
experiments is composed of randomly selected events (with

1 2 3 4 5 6 7 8 9 10
Time (s)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

N
o
rm

a
liz
e
d
 F
re
q
u
e
n
cy

Fig. 7. Normalized times for full-coverage tests, 2, 500 events.

replacement). Thus, we select 12, 505 chunks of 2, 500 events
and 25, 600 chunks of 1, 250 events from the original dataset.
For each chunk, we measure the run time required to process
it and use binning to capture its frequency. In Figure 6 and
Figure 7, each bin represents an interval of 100 milliseconds.

Figure 6 depicts the results of the expanded experimentation
on chunks of 1, 250 events. Our results indicate that 73.3% of
the chunks take less than a second to complete. There were
extreme outliers in the results, with processing times ranging
from as little as 0.46 seconds to a maximum of 8 seconds. The
average processing time is 1.047 seconds, meeting the stated
definition of real-time.

Figure 7 depicts the expanded experimentation using the
chunks of 2, 500 events. The average number of results that fell
under one second decreases sharply to 5.0%. However, 94.0%
of the chunks take less than two seconds to complete. The
minimum time and maximum time to process a random chunk
increases to 0.72 seconds and 10.69 seconds respectively.
The average time required to process 2, 500 events is 1.591
seconds.

The discrepancy between the times in our initial and ex-
panded sets of experiments corresponds with the number of
regex matches in each. In the first set of experiments, the
number of matches were on the order of a thousand per
chunk. In the second set of experiments, however, some chunks
had tens of thousands of matches. These results support our
analysis that that the run time of our approach is heavily
dependent on the number of regex matches in any particular
chunk.

VI. CONCLUSIONS

In this paper, we described a novel parallel algorithm
that leverages Apache Spark for parallel regex matching. The
immediate goal of our project was to design a system for
the U.S. Army ERDC, which requested the ability to process
events at a rate of 1, 250 per second to meet anticipated growth
of data at normal operations, and 2, 500 events per second
during anticipated peak. ERDC provided us with a dataset
of 31 million real events and 569 regular expressions. Our

978-1-5386-3472-1/17/$31.00 ©2017 IEEE

results show that our parallel approach is able to process 1, 250
events in 1.047 seconds and 2, 500 events in 1.591 seconds on
average on 36 cores. However, depending on the composition
of events and the set of regular expressions, the system is
capable of processing up to 15, 000 events in a second.

Our results suggest that our system is capable of meeting
the needs of a large organization like the U.S. Army in order
to perform regex matching on network traffic at scale. To this
end, our results are an important first step to enable the DOD
to develop this capability on their networks. We anticipate
that our results will also be of interest to other organizations
performing regex matching on network traffic data.

We have several recommendations for administrators hoping
to implement our system at their organizations. Since the run
time of our approach is dependent heavily on the number
of regex matches that occur, extreme care should be taken
when generating a set of regexes for input. In our specific
case, the extent of our analysis was limited by the set of
regexes provided to us by ERDC. Some of the regexes we
received were redundant, matching the same or very similar
strings to other regexes in the set. The generality of some of
the provided regexes also led us to believe that there were
many false positives (i.e. URIs flagged as suspicious when
they were not). Given the expense of regex computations when
compared to other pattern matching techniques, less expensive
key-word matching should first be used to flag events; only
then should one use expensive regexes. We believe this strategy
will increase throughput.

Furthermore, if information is provided about a particular
regex (i.e., it only matches IP addresses), then we can ac-
celerate our approach by targeting only those specific fields
in an event. Our current implementation checks entire events
and each event field on a match. Future work can evaluate
the potential speed-up of this optimization and extend our
approach on other types of application event data (e.g. DNS).

In addition, we would like to explore the effect of par-
allelizing regexes rather than events. Since regexes can be
challenging to load balance effectively, we theorize the First
Fit Decreasing Algorithm, an algorithm used to solve Bin
Packing problems, could be used to evenly distribute the
regexes to each computing core. Extensive testing will need to
be performed to validate this hypothesis; we also believe that
performance will be heavily dependent on the set of regexes
and available architecture at a particular organization. We also
hope to cross validate our approach against actual malicious
traffic, and perhaps augment our system with machine learning
and Mlib [19]. Lastly, we acknowledge both the application
and research potential of FPGAs and ASICS for regex match-
ing [2], and hope to explore it as another avenue of future
research.

ACKNOWLEDGMENTS

This paper summarizes the results of an undergraduate
capstone project at the U.S. Military Academy. Funding for
this project was provided by the DOD High Performance
Computing Modernization Program (HPCMP) and the Army

Engineer Research & Development Center (ERDC). We are
also extremely grateful to ERDC and HPCMP for provid-
ing access to the DOD Topaz system, and providing us
experimental data for testing. Special thanks to Dr. Leslie
Leonard, Dr. Ben Parsons, and Mr. William Glodek of ERDC
for troubleshooting assistance. We are also grateful to Dr.
Chris Okasaki and MAJ Benjamin Klimkowski of the U.S.
Military Academy for insightful comments and feedback on
this research. The opinions in this work are solely of the
authors and do not necessarily reflect those of the U.S. Military
Academy, the U.S. Army, or the Department of Defense.

REFERENCES

[1] V. Paxson, “Bro: a system for detecting network intruders in real-time,”
Computer networks, vol. 31, no. 23, pp. 2435–2463, 1999.

[2] F. Yu, Z. Chen, Y. Diao, T. Lakshman, and R. H. Katz, “Fast and
memory-efficient regular expression matching for deep packet inspec-
tion,” in Architecture for Networking and Communications systems,
2006. ANCS 2006. ACM/IEEE Symposium on. IEEE, 2006, pp. 93–102.

[3] Apache Foundation, “Apache Spark: Lightning-fast cluster computing,”
Internet Website, 2013. [Online]. Available: http://spark.apache.org/

[4] T. White, Hadoop: The definitive guide. ” O’Reilly Media, Inc.”, 2012.
[5] Lightning-fast cluster computing. [Online]. Available: http://spark.

apache.org
[6] S. S. Vernekar and A. Buchade, “Mapreduce based log file analysis

for system threats and problem identification,” in 2013 3rd IEEE
International Advance Computing Conference (IACC), Feb 2013, pp.
831–835.

[7] Y. Lee and Y. Lee, “Toward scalable internet traffic measurement and
analysis with Hadoop,” ACM SIGCOMM Computer Communication
Review, vol. 43, no. 1, pp. 5–13, 2013.

[8] D. Logothetis, C. Trezzo, K. C. Webb, and K. Yocum, “In-situ mapre-
duce for log processing,” in 2011 USENIX Annual Technical Conference
(USENIX ATC11), 2011, p. 115.

[9] A. M. Karimi, Q. Niyaz, W. Sun, A. Y. Javaid, and V. K. Devabhaktuni,
“Distributed network traffic feature extraction for a real-time ids,” in
2016 IEEE International Conference on Electro Information Technology
(EIT), May 2016, pp. 0522–0526.

[10] The cooperative analysis for internet data analysis. [Online]. Available:
http://www.caida.org

[11] I. Mavridis and H. Karatza, “Performance evaluation of cloud-based
log file analysis with Apache Hadoop and Apache Spark,” Journal of
Systems and Software, vol. 125, pp. 133 – 151, 2017. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0164121216302370

[12] S. Marchal, X. Jiang, R. State, and T. Engel, “A big data architecture for
large scale security monitoring,” in 2014 IEEE International Congress
on Big Data, June 2014, pp. 56–63.

[13] C. Engle, A. Lupher, R. Xin, M. Zaharia, M. J. Franklin, S. Shenker,
and I. Stoica, “Shark: fast data analysis using coarse-grained distributed
memory,” in Proceedings of the 2012 ACM SIGMOD International
Conference on Management of Data. ACM, 2012, pp. 689–692.

[14] S. Shahrivari, “Beyond batch processing: Towards real-time and
streaming big data,” Computers, vol. 3, no. 4, pp. 117–129, 2014.
[Online]. Available: http://www.mdpi.com/2073-431X/3/4/117

[15] M. Crochemore and W. Rytter, Text algorithms. Oxford University
Press, 1994.

[16] B. Bse, B. Avasarala, S. Tirthapura, Y. Y. Chung, and D. Steiner, “De-
tecting insider threats using RADISH: A system for real-time anomaly
detection in heterogeneous data streams,” IEEE Systems Journal, vol. PP,
no. 99, pp. 1–12, 2017.

[17] Y. Takano and R. Miura, “Faris: Fast and memory-efficient url filter by
domain specific machine,” in 2016 6th International Conference on IT
Convergence and Security (ICITCS), Sept 2016, pp. 1–7.

[18] R. L. Henderson, “Job scheduling under the portable batch system,”
in Workshop on Job Scheduling Strategies for Parallel Processing.
Springer, 1995, pp. 279–294.

[19] X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman, D. Liu,
J. Freeman, D. Tsai, M. Amde, S. Owen et al., “MLlib: Machine learning
in Apache Spark,” The Journal of Machine Learning Research, vol. 17,
no. 1, pp. 1235–1241, 2016.

978-1-5386-3472-1/17/$31.00 ©2017 IEEE

