
Towards Energy-Proportional Anomaly Detection in
the Smart Grid

Spencer Drakontaidis, Michael Stanchi, Gabriel Glazer, Jason Hussey, Aaron St. Leger∗ and Suzanne J. Matthews∗
Department of Electrical Engineering & Computer Science

United States Military Academy, West Point, NY 10996
Emails: [spencer.drakontaidis, michael.stanchi, gabriel.glazer, jason.hussey, aaron.stleger, suzanne.matthews]@usma.edu

∗Corresponding Authors

Abstract—Phasor Measurement Unit (PMU) deployment is in-
creasing throughout national power grids in an effort to improve
operator situational awareness of rapid oscillations and other
fluctuations that could indicate a future disruption of service.
However, the quantity of data produced by PMU deployment
makes real-time analysis extremely challenging, causing grid
designers to invest in large centralized analysis systems that
consume significant amounts of energy. In this paper, we argue for
a more energy-proportional approach to anomaly detection, and
advocate for a decentralized, heterogeneous architecture to keep
computational load at acceptable levels for lower-energy chipsets.
Our results demonstrate how anomalies can be detected at real-
time speeds using single board computers for on-line analysis,
and in minutes when running off-line historical analysis using a
multicore server running Apache Spark.

I. INTRODUCTION

Smart grid technologies and applications aim to increase
reliability, resilience and efficiency of power grids. Smart grid
technologies differentiate themselves from legacy technologies
by including embedded processing, two-way communication
and control capability. Phasor Measurement Units (PMUs)
are one example. PMUs provide direct measurement of time
synchronized voltage and current phasors throughout the
power grid at sample rates significantly higher than traditional
sensors. PMUs can enhance power system operations through
Wide Area Monitoring and Control (WAMC) applications [1],
[2], [3], [4]. WAMC applications must acquire and analyze
PMU data in real-time, or near real-time. Historical analysis
of PMU data can yield further insight into power system
operation over time and assist in the development of real-time
WAMC applications.

For example, detection and identification of power and fre-
quency oscillations is one of the most beneficial uses of PMU
data according to the North American Electric Reliability
Corporation [2]. Detecting oscillations (and other anomalies in
power grids) in real-time can enhance power system operator
situational awareness and be integrated into automated wide-
area control loops to improve WAMC capability and resiliency.
However, as PMU deployment increases, communicating and
processing data in real-time becomes challenging. The dataset
for historical analysis grows considerably as more PMUs are
installed. Both real-time and historical analysis of PMU data
are investigated in this work.

The quantity of PMU data (and the computing resources
required) varies widely based on the analysis being performed
(real-time or historical) and the computing architectures cho-
sen. Generally speaking, WAMC systems follow a centralized
approach for implementing anomaly detection. Centralized
anomaly detection requires significant communication network
capacity to transfer all PMU data and typically employ cluster
computing for data analysis. However, clusters are expensive
to power, cool and maintain. Furthermore, they may be sub-
optimal for all types of analysis. This lack of energy-efficiency
becomes a bigger problem as power becomes a dominant
concern in the design of computing systems.

This work investigates progress toward achieving energy-
proportional anomaly detection using PMU data in smart grids.
We posit this can be achieved by exploring computing tech-
niques and architectures that reduce the total energy consumed
by the system, while still achieving run-times acceptable
for real-time and off-line analyses. Particularly, to improve
energy-proportionality of anomaly detection in the smart grid,
we focus on a.) real-time anomaly detection using single board
computers and b.) off-line historical analysis of PMU data
using a multicore server.

Our proposed approach to real-time anomaly detection is
integrated and tested in a smart grid testbed. Our historical
analysis approach is tested on 100 million real measurements
produced by the testbed. Our results show that scaling the
architecture to match the amount of work being performed
is a successful strategy. We are able to achieve real-time
performance when performing on-line anomaly detection of
real PMU data. Our off-line historical analysis of 100 million
real PMU measurements can be accomplished in 3.38 minutes
on a single server running Apache Spark [5]. Our results
support a distributed strategy of incorporating PMUs and
servers throughout the grid. This prevents the transmission and
accumulation of too much data at a central node, a big cause
of latency and inefficiencies in current designs.

The rest of the paper is organized as follows. In section
II background and related work is discussed. An overview of
the proposed system and architecture is provided in section III.
Section IV presents details on historical and real-time anomaly
detection. Results are shown in section V and followed by
concluding remarks.

II. BACKGROUND

The term “energy-proportional computing” was coined by
Google researchers in their seminal paper [6] observing that
peak energy efficiency occurs at peak CPU utilization. The
authors argue that servers should be redesigned to consume
power in proportion to work being done. The ramifications
of this observation increase as power consumption becomes
a forcing function in the architectural design choices of all
computing systems. In the context of WAMC applications,
the expense and power consumption of large-scale clusters for
anomaly detection obligates the exploration of more energy-
efficient solutions.

Redesigning servers to be energy-proportional is difficult,
and is an area under active research. However, if peak energy
efficiency occurs at peak CPU utilization, we posit that we
can get closer to achieving energy-proportionality in the smart
grid by a.) redistributing computational load so more work is
done on a single CPU and b.) using weaker, yet more energy-
efficient, chipsets for analysis. The former can be achieved by
leveraging shared-memory strategies for multicore execution,
while the latter can be achieved by employing single board
computers.

Unlike microcontrollers, single board computers (or SBCs)
are fully functioning computers with much more memory
and computational power. The have a plethora of ports that
facilitate their integration with existing hardware. For example,
the Raspberry Pi [7] has a quad-core ARM processor, 1 GB
of RAM and costs only $35.00.

A. Related Work

While APIs [8], [9] for shared-memory programming have
existed for decades, the learning curve required for successful
deployment has caused many researchers to shy away from
the explicit parallel programming required to harness multi-
core systems. Unsurprisingly, researchers that explore parallel
solutions for the smart grid typically focus on implicit, cluster-
based solutions like Apache Hadoop [10], the most popular
open source implementation of MapReduce. The MapReduce
paradigm [11] takes an implicit, data parallel approach to
analyzing large amounts of data. Programmers need only
define a map() and a reduce() function; the underlying
framework automates the rest.

Several researchers [12], [13], [14], [15], [16] have explored
the use of Hadoop for smart grid applications. Most notably,
the Tennessee Valley Authority (TVA) used a Hadoop cluster
with 180 processing cores for historic analysis of 25 TB
of PMU data collected over a period of four years [12].
Researchers in the United Kingdom [15] used Hadoop on an 8-
node cluster to parallelize the analysis of 16 million simulated
PMU measurements, achieving a run-time of approximately
8 minutes. Other researchers [13], [14] attempted to use
Hadoop clusters for smart grid analysis with limited success,
owing largely to the bottleneck of writing intermediates to the
Hadoop File System (HFS) on smaller datasets.

Researchers at West Point [17] opted to use Phoenix++ [18],
a shared-memory implementation of MapReduce, to detect

power grid anomalies using an multicore server. They were
able to detect anomalies on a large dataset of 18 million real
PMU measurements in just seconds. Their system detected
constraint anomalies (where measurements fall outside an
allowed window of variation) and temporal anomalies (a rapid
fluctuation in measured data within a window). The latter was
detected using the Fano Factor, which is defined as:

F =
σ2
w

µw

where σ2
W is the variance of measurements in the window w,

and µw is the mean of the data in the window. Experiments
showed the effectiveness [17] of the Fano factor for detecting
temporal anomalies.

However, there are limitations to adopting Phoenix++ for
WAMC applications. Specifically, the Phoenix++ platform is
no longer under active development, and appears to have some
incompatibilities with the default libraries in recent Linux
versions. This suggests that Phoenix++ is not a sustainable
choice for future large-scale smart grid applications.

One promising platform for smart grid applications is
Apache Spark [5]. A key advantage of Apache Spark over
Hadoop is its use of Resilient Distributed Datasets (RDDs)
and lazy evaluation, which can significantly reduce the number
of operations performed on large datasets. Like Phoenix++,
Apache Spark evaluates intermediate values in memory. Both
of these features can result in significant improvements in ap-
plication performance. Some benchmarks suggest that Apache
Spark is up to 100 times faster than Hadoop [5].

The frequency monitoring network known as
FNET/GridEye [1], [19], [20], [21] is one of the earliest
adopters of using Apache Spark for detecting alarm events in
the Smart Grid. The authors advocate the use of Frequency
Disturbance Recorders (FDRs) over PMUs, due to higher
deployment cost of PMUs. The recent FNET architecture [1]
uses cluster computing with Apache Spark, Hadoop and
R for near real-time FDR data analysis and off-line FDR
data analysis. For real-time applications, a single server
which concentrates all FDR data is used. Our work focuses
on alarm detection of PMU data. We note that while both
FDRs and PMUs provide highly-accurate, GPS time-stamped,
phasor and frequency measurements in a distributed fashion,
PMUs are becoming increasingly inexpensive, provide more
measurements than FDRs, and provide different functionality
by monitoring the power grid at the transmission level.

Researchers recently demonstrated a frequency estimation
technique using FPGAs [22]. They posit that detecting nu-
merous other conditions to include fault detection would
also be possible, which is part of what we present in this
publication. Other work involving FPGAs and the smart grid
have involved voltage control [23] and regulation [24] in
communication control systems, but not specifically anomaly
detection. Researchers also explored the use of the Raspberry
Pi as a “network tap” for monitoring a testbed for network
intrusions [25]. However, the Raspberry Pi appears to be used
for data collection only, and not anomaly detection.

Fig. 1. System Overview

More recently, researchers have discussed the use of Rasp-
berry Pi clusters for centralized anomaly detection [26], and
proposed the use of Raspberry Pis in a distributed manner
for real-time anomaly detection [27]. In the latter paper, a
simulation suggested that a single Raspberry Pi was capable of
detecting anomalies in up to 50 PMUs at real-time speeds [27].
The work presented in this paper implements the strategy
mentioned in prior work in a smart grid testbed, confirming
the feasibility of the design.

B. Our Contributions

In this paper, we present an energy-proportional strategy to
anomaly detection in the smart grid. Specifically, we:

• Integrate a Raspberry Pi based real-time anomaly detector
(on-line detection)

• Design a parallel, multicore Apache Spark approach for
historical anomaly detection (off-line detection)

Our work has several advantages over prior work. To the
best of our knowledge, we are the first to integrate a Raspberry
Pi for real-time anomaly detection in the smart grid. Not only
are we able to achieve real-time on-line analysis, but we are
able to do on a device that has a peak power draw of 4 Watts.
Likewise, we believe we are the first to show that historical
analysis for anomalies is possible using a multicore instance
of Apache Spark. Unlike prior work which focuses on Apache
Spark clusters, we are able to detect anomalies in minutes on
a single multi-core node. We also benchmark our historical
analysis on a large, real dataset consisting of over 100 million
PMU measurements derived from a smart grid testbed. Our
36-core Apache Spark server under peak load consumes just
330 Watts.

Our results clearly show that we are able to drastically cut
down the power requirements required for smart grid analysis,
and make critical progress toward creating a more energy-
proportional anomaly detection system for the smart grid.

III. SYSTEM OVERVIEW

Figure 1 gives an overview of our smart grid architecture.
The system is comprised of a physical testbed; a Microsoft
2008 server that houses the Phasor Data Concentrator (PDC)
and a web-based user interface that allows a user to interact
with the grid; a connection to an Apache Spark server for
historical analysis; and a connection to a Raspberry Pi for
real-time analysis.

Fig. 2. USMA Smart Grid Testbed

Fig. 3. User Interface with Anomaly Notification

a) The physical testbed: Our smart grid testbed (Fig-
ure 2) is a 1:1000 scaled version of a 46kV power system
with nine transmission lines, seven-buses, eight real Phasor
Measurement Units (PMUs), solar micro-inverters to simulate
power generated from solar panels, a controllable load to alter
the resistance and resistive inductance the grid experiences,
a fault generator to introduce anomalies to the grid, and a
static VAR compensator [28]. The PMUs measure voltage and
current at each bus in the testbed, calculate voltage and current
phasors, system frequency, and other derived quantifies as
outlined in the IEEE synchrophasor standard [29]. The PMUs
send data via TCP/IP to our server in accordance with the
IEEE synchrophasor standard [30].

b) The PDC/UI server: Both the Phasor Data Concentra-
tor (openPDC) and MySQL database are currently housed on a
Windows 2008 server. The server collects PMU data from the
testbed and runs it through openPDC, which time-aligns the
data and stores them in a MySQL database. OpenPDC assigns
each measurement a signal ID. The signal ID is a 32-character
hexadecimal hash that uniquely identifies the associated PMU
and the type of measurement. We use the signal ID throughout
the detection process to identify each measurement’s allowed
levels of variation. The data stored in the MySQL database
can be queried later for either historical or real time analysis.

This server also hosts the user interface (UI), a website that
integrates the hardware modules and the anomaly detection
software. The UI consists of static HTML and an AJAX (Asyn-
chronous JavaScript and XML) framework to display grid
readings and anomaly notifications in real-time (see Figure 3).
Our UI also integrates the jQuery module Highcharts [31] to

Fig. 4. Overview of Real-Time Analysis

enable grid operators to visualize and “zoom in” on variable
time intervals from historical data.

c) Raspberry Pi for Real-time Analysis: The Pi is con-
nected to the Windows 2008 server over Ethernet in a closed,
private network. This allows for speed on network communi-
cations and reduces the attack surface to help provide security
for the system as a whole. The Pi analyzes the data coming
in from the grid, and sends results back to the server which
displays them on the UI (Figure 3). The Pi sends a query to
the database in half-second intervals for anomaly detection.
Detected anomalies are relayed back to the server using the
Python requests library. The UI checks for new anomalies
every half second and displays them to the user.

d) Apache Spark server for Historical Analysis: For
historical analysis, we utilize a separate server running Apache
Spark. Data is queried from the MySQL database and is
aggregated into a CSV file. This CSV file is compressed and
sent to the Apache Spark server for off-line analysis. Unlike
on-line analysis, off-line analysis is expected to be executed
periodically. In our case, we perform off-line analysis on data
collected over 12 hours from the smart grid testbed.

IV. ANOMALY DETECTION

The input to the anomaly detection approach is a comma-
separated value (CSV) file produced by a database query con-
taining all recorded measurements from a particular interval,
and a CSV file containing operator-determined constraints
for each PMU. Each line of the input file contains a single
measurement, consisting of a signal ID, a time stamp, and the
value of the measurement. Recall that the signal ID is a hash
that uniquely identifies a specific type of measurement coming
from a certain PMU. For our 1-phase distribution grid, the 8
PMUs measure voltage and current phasors, system frequency,
and change in frequency every 16.67 ms, corresponding to a
reporting rate of 60 Hz. Thus, while reporting single phase data
with 8 PMUs, 40 measurements are recorded every 16.67 ms.
We refer to a 40-measurement block of data as a data frame.
Each line of the operator-defined constraint file consists of a
a signal ID, PMU number, measurement type, minimum and
maximum values defining the window of allowed variation,
and the maximum allowed Fano factor limit. The constraint
data is indexed by signal ID and loaded into a global hash
table prior to analysis.

A. Real-Time Analysis

Figure 4 illustrates the query - analyze - alert cycle executed
by our Raspberry Pi during real-time analysis. This aspect of

Fig. 5. Overview of Historical Analysis

the system represents the first real-world implementation of
the distributed Pi anomaly detection system proposed in prior
work [27]. We employ a Python wrapper around a core C
program [27], owing to the lack of C libraries for querying
MySQL databases and the relative speed of C over Python.
For real-time analysis, the goal is to process a frame of data
as quickly as data is produced (16.67 milliseconds).

The Python program on the Raspberry Pi first queries data
directly from the MySQL database via the Python mysql
module. The query finds the 1200 most recent measurements
in the database (determined by the time stamp stored with
each measurement). We note here that 1200 measurements is
equivalent to 30 frames of data which, at a 60 HZ reporting
rate, is produced every 0.50 seconds. Thus querying 1200 mea-
surements every half-second ensures we keep pace with the
real-time production of measurements from the grid. Another
advantage of the 1200 measurement interval is that it lowers
the overheard cost associated with querying the database. We
note that the user can decide how big each aggregation interval,
and retains the ability to slow down or speed up the collection
rate of the script as needed.

The Python program uses the os.subprocess module
to call a C program that reads in the data, processes it for
anomalies, and outputs any anomalies to a file on the Pi. The
Python program reads in any detected anomalies, assigns them
identification numbers, and converts them into JSON format,
where the identification number is used as the key and the
entire line of data is used as the value. This JSON object is
then sent to a dedicated HTTP server on the Windows Server
that receives this data via an HTTP POST request.

The HTTP Server listens for POST requests, feeding re-
ceived data into a dictionary, which aggregates the data into
human operator readable form. Each individual POST request
is logged so that the data can be accessed at a later time.
Once the aggregation interval is complete, the HTTP Server
writes the data to a file that is consumed by a JavaScript
function every half second. The GUI is then updated with
any anomalies that were detected.

B. Historical Analysis

Figure 5 gives an overview of our historical analysis
process. Unlike the previous work [17], where constraint
and temporal anomalies were analyzed over two iterations
of MapReduce in Phoenix++, we design a new MapReduce
algorithm that enables anomaly detection using only a single
MapReduce instance in Apache Spark. Furthermore, unlike
prior work [17], the principle purpose of MapReduce here

Fig. 6. Anomaly Detection Scheme: Reduce Phase

is to sort the data by signal IDs. Anomaly detection occurs
entirely in the reduce phase.

During the Map phase, input data is split between each
instance of the map() function (or mapper), and creates
(key,value) pairs where each signal ID is the key, and the
value is a tuple consisting of time-stamp and associated
measurement. Note that each mapper executes independently
and in parallel. The outputted (key,value) pairs are fed to a
Combiner, which hashes all common signal IDs together to
create individual queues for each signal ID. At the conclusion
of the Map and Combiner phases, the data is organized by
signal ID into (signal ID, list(measurements)) pairs.

During the Reduce phase, each instance of the reduce()
function (or reducer) receives a set of queues and examines
each for anomalies. Prior to analysis, each queue’s data
is sorted according to time-stamp. Next, we run a sliding
window across all the measurement data. The width of the
window corresponds to the reporting rate. Our testbed has a
60 Hz reporting rate. Thus, we set the window size to 60
measurements. We note the window size can be adjusted to
fine tune the performance of anomaly detection.

To illustrate this process, we present an example of voltage
anomaly detection in Figure 6. Prior to the start of the process,
we do a hash table lookup on the signal ID and retrieve
the measurements that define the window of allowed varia-
tion for voltage. In this case, the nominal range for voltage
measurements is anything between 25, 000 V and 27, 600 V.
Any measurement outside this window is labeled a constraint
anomaly. We also look up the Fano Factor limit associated
with the signal ID (in this case, experimentally derived [17]
as 2.7). In this example, we use a window size of 4.

The anomaly detection process begins with a constraint
check on the first window of measurements, which are the first
four measurements listed in Figure 6. In the first window, the
first two elements follow below the allowed range for voltage.
Thus, these two measurements are returned as constraint

anomalies. Measurements three and four in contrast are not
marked as constraint anomalies, as they fall within the nominal
range. Thus, the start position of the window is advanced to
measurement three, or 27, 012 V (Figure 6). The constraint
check is repeated on all elements in this window. Since there
are no constraint anomalies present in the window, we next
check the window for temporal anomalies.

During temporal analysis, the Fano factor of the measure-
ment data within the window is calculated. In the case of the
example presented in Figure 6, the calculated Fano factor for
the window defined by the measurements 27, 012 . . . 27, 018
is 5.42, which is above our Fano factor limit. Thus, this
window is marked as having a temporal anomaly, and the
Fano factor along with the starting and ending timestamps is
outputted to the user. The window’s position is then advanced
by one. In Figure 6, the new window is now defined by
26, 062 . . . 27, 014. We first perform a constraint check on the
new measurement inserted into the window (27, 014). Since
this is within the nominal range, we recompute the Fano factor,
and find that is now 5.70 which is again anomalous. This
window’s timestamps are also outputted to the user.

The window’s position is advanced by one each time, with a
constraint check performed on the newest measurement added
to the window. If a constraint anomaly is found, the window’s
start position is advanced one past the anomalous measure-
ment. Otherwise, temporal anomaly checks are performed on
the sliding window. This process repeats until the measurement
list associated with the signal ID is exhausted. In Figure 6, the
computed Fano factors for each of the subsequent windows
are below the Fano factor limit, so no additional windows are
output as being anomalous.

V. EXPERIMENTAL BENCHMARKING & RESULTS

Benchmarking was performed on real PMU measurement
data derived from the USMA testbed. For real-time anomaly
detection, the Raspberry Pi reads measurements as the grid
testbed operates. For historical analysis, we recorded 100 mil-
lion measurements over a 12-hour period, corresponding to
approximately 7.4 GB of data.

Historical Analysis experimentation was run on DOD super-
computer Topaz, a SGI ICE X system located at the U.S. Army
Engineer Research & Development center. The supercomputer
is comprised of 3, 456 nodes, each with a 36-core Intel Xeon
E5-2699v3 Haswell processor, with core speeds of 2.3 GHz
and 128 GB of Random Access Memory. Each node consumes
approximately 330 Watts of power at peak load. Since our
goal was to achieve efficient speeds using as few resources as
possible, experimentation was conducted on a single compute
node running Apache Spark.

Real-time experimentation was run on a Raspberry Pi 3
Model B single board computer, which retails for $35.00. The
Raspberry Pi 3 features a quad-core ARM Cortex-A53 proces-
sor at 1.2 GHz, and 1 GB of RAM. Recent benchmarks [32],
[33] show that the Raspberry Pi 3 consumes up to 4 Watts of
power at peak load.

TABLE I
REAL-TIME ANOMALY DETECTION TIMES

Raspberry Pi Detection Workflow
Component

Average
Time (ms)

Real-time
(ms)

Query Time (Latency) 5.3 NA
Results Notification to Server Time
(Latency)

25 NA

Anomaly Detection Time (30 Data
frames)

20 500

Anomaly Detection Time (1 Data
frame)

0.40 16.67

TABLE II
HISTORICAL ANOMALY DETECTION TIMES (S)

Step 10 Million 50 Million 100 Million
Initialize Spark 1.75 1.76 1.75
Read In Data 6.74 6.69 6.74

Anomaly Detection 24.49 95.81 194.69
Total Time 32.98 104.26 203.18

a) Real Time Analysis Results: Table I illustrates our
real-time benchmarking results. Time is measured in millisec-
onds (ms), and illustrates the amount of time required for our
on-line anomaly detection workflow as compared to timing
requirements for real-time analysis. Specifically, data must be
processed for anomalies at a faster rate than data is produced.
For the anomaly detector reporting every 2 Hz and PMUs
reporting at 60 Hz, we must analyze this data in 500 ms (or
16.67 ms per data frame). Average anomaly detection time
represents the average of five runs.

The time required to query the database for 1200 mea-
surements and send the results back to the Windows 2008
server represent the latency of our system, and averages
approximately 30.30 ms for 30 frames of data. Next, the time
to detect all anomalies in our 1200 measurements and output
them to a file takes approximately 20 ms. Thus, the total
anomaly detection time takes 50.30 ms, well below the 500 ms
limit for required for real-time analysis. For a single data
frame, the average time is 0.40 ms. Our results clearly indicate
that we meet the standard for real-time anomaly detection.
Lastly, CPU utilization on the Pi stayed steady between 66%
and 71%. This is perhaps unsurprising, as prior simulation
results [27] suggested that a Raspberry Pi could support up to
50 PMUs and still meet the definition of real-time.

b) Historical Analysis Results: Table II shows our raw
run times for off-line historical anomaly detection. For these
tests, we vary the input data set size from 10 million to
100 million measurements by increments of 10 million. For
each data size, we run the algorithm five times.

Spark initialization is consistent over our different datasets,
averaging approximately 1.75 seconds. The Anomaly detec-
tion time includes the time to detect anomalies along with the
amount of time required to format the data in a manner that
can be outputted to the user. We note that file write time is
not included, as this time is highly variable and dependent on
the number of detected anomalies. We find that the anomaly
detection time is roughly linear with the size of the input.

For 100 million measurements, we are able to detect all
anomalies in 3.38 minutes. CPU utilization after startup for the
100 million dataset varied between 52% to 73%, suggesting
that the system would support analysis of larger files, or a
smaller server could be used.

VI. CONCLUSION

Designing compute systems that consume energy in propor-
tion to the amount of work performed becomes a critical goal
as energy consumption becomes the dominant factor in system
design. In this paper, we propose a system to better achieve
“energy-proportional” anomaly detection in the smart grid.
Instead of proposing a new server design, we suggest a two-
prong approach that shifts anomaly detection to processors
that better match the computational load required of analysis.
Our goal here is not to get the fastest results, but acceptable
results while maintaining relatively low power consumption.
To the best of our knowledge, we are the first to suggest such
a strategy for anomaly detection in the smart grid.

For real-time analysis, we are the first to integrate a
Raspberry Pi into a smart grid testbed for on-line anomaly
detection. Our results indicate that the Pi is able to analyze
data in real-time while requiring at most a 4 Watt power draw.
This lower consumption coupled with the inexpensive nature
of the Pi support the notion that single board computers like
the Pi can be used to enable real-time anomaly detection of
PMU data. In a larger system, Pis would be networked to a
subset of PMUs throughout the grid.

For off-line historical analysis, we show Apache Spark exe-
cuting on a single node is capable of analyzing large amounts
of data very efficiently. Like real-time analysis, we believe that
historical analysis should be distributed throughout the grid,
with historical analysis concentrated on local power grids. We
also believe a more “edge-computing” approach to on-line and
off-line anomaly detection prevents data from snowballing into
a big data problem that would require the large number of
computational resources that necessitate clusters.

Our results strongly support our strategy for creating a more
energy-efficient smart grid. By shifting computational load to
processors that can still analyze the data at acceptable rates,
we are maximizing the energy-efficiency of our system. We
believe that our work represents an important step toward
creating a more energy-efficient smart grid, and will also be of
high interest to anyone trying to improve the energy efficiency
of alarm analysis in other ICS/SCADA systems.

ACKNOWLEDGMENT

Funding for this project was provided by the Office of Naval
Research, the U.S. Army Armament Research, Development
and Engineering Center (ARDEC) and the DOD High Per-
formance Computing Modernization Program (HPCMP). We
are especially grateful to the HPCMP program for a grant of
time on the supercomputer Topaz. The views expressed in this
article are those of the author and do not reflect the official
policy or position of the Department of the Army, Department
of Defense or the U.S. Government.

REFERENCES

[1] D. Zhou, J. Guo, Y. Zhang, J. Chai, H. Liu, Y. Liu, C. Huang, X. Gui, and
Y. Liu, “Distributed data analytics platform for wide-area synchrophasor
measurement systems,” IEEE Transactions on Smart Grid, vol. 7, no. 5,
pp. 2397–2405, Sept 2016.

[2] NERC, “Real-time application of synchrophasors for improving realia-
bility,” Tech. Rep. 1, 2010.

[3] A. St. Leger, J. James, and D. Frederick, “Smart grid modeling approach
for wide area control applications,” in 2012 IEEE Power and Energy
Society General Meeting, July 2012, pp. 1–5.

[4] K. M. Koellner, S. Burks, B. Blevins, S. N. Nuthalapati, S. Rajagopalan,
and M. L. Holloway, “Synchrophasors across texas: The deployment of
phasor measurement technology in the ercot region,” IEEE Power and
Energy Magazine, vol. 13, no. 5, pp. 36–40, Sept 2015.

[5] Apache Foundation, “Apache Spark: Lightning-fast cluster computing,”
Internet Website, 2013. [Online]. Available: http://spark.apache.org/

[6] L. A. Barroso and U. Hölzle, “The case for energy-proportional com-
puting,” Computer, vol. 40, no. 12, 2007.

[7] Raspberry Pi Foundation. (2016) Raspberry pi 3 model b. [Online].
Available: https://www.raspberrypi.org/products/raspberry-pi-3-model-
b/

[8] B. Nichols, D. Buttlar, J. Farrell, and J. Farrell, Pthreads programming:
A POSIX standard for better multiprocessing. ” O’Reilly Media, Inc.”,
1996.

[9] L. Dagum and R. Menon, “Openmp: an industry standard api for shared-
memory programming,” IEEE computational science and engineering,
vol. 5, no. 1, pp. 46–55, 1998.

[10] T. White, Hadoop: The definitive guide. ” O’Reilly Media, Inc.”, 2012.
[11] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on

large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113, Jan. 2008.
[Online]. Available: http://doi.acm.org/10.1145/1327452.1327492

[12] P. Trachian, “Machine learning and windowed subsecond event detection
on pmu data via hadoop and the openpdc,” in IEEE PES General
Meeting. IEEE, 2010, pp. 1–5.

[13] M. Edwards, A. Rambani, Y. Zhu, and M. Musavi, “Design of hadoop-
based framework for analytics of large synchrophasor datasets,” Proce-
dia Computer Science, vol. 12, pp. 254–258, 2012.

[14] F. Bach, H. K. Çakmak, H. Maass, and U. Kuehnapfel, “Power grid time
series data analysis with pig on a hadoop cluster compared to multi core
systems,” in 2013 21st Euromicro International Conference on Parallel,
Distributed, and Network-Based Processing. IEEE, 2013, pp. 208–212.

[15] M. Khan, P. M. Ashton, M. Li, G. A. Taylor, I. Pisica, and J. Liu,
“Parallel detrended fluctuation analysis for fast event detection on
massive pmu data,” IEEE Transactions on Smart Grid, vol. 6, no. 1,
pp. 360–368, 2015.

[16] V. Fanibhare and V. Dahake, “Smartgrids: Mapreduce framework using
hadoop,” in 2016 3rd International Conference on Signal Processing
and Integrated Networks (SPIN), Feb 2016, pp. 400–405.

[17] S. J. Matthews and A. St. Leger, “Leveraging mapreduce and syn-
chrophasors for real-time anomaly detection in the smart grid,” IEEE
Transactions on Emerging Topics in Computing, vol. PP, no. 99, pp.
1–1, 2017.

[18] J. Talbot, R. M. Yoo, and C. Kozyrakis, “Phoenix++: Modular
mapreduce for shared-memory systems,” in Proceedings of the Second
International Workshop on MapReduce and Its Applications, ser.
MapReduce ’11. New York, NY, USA: ACM, 2011, pp. 9–16.
[Online]. Available: http://doi.acm.org/10.1145/1996092.1996095

[19] J. Chai, Y. Liu, J. Guo, L. Wu, D. Zhou, W. Yao, Y. Liu, T. King,
J. R. Gracia, and M. Patel, “Wide-area measurement data analytics using
fnet/grideye: A review,” in 2016 Power Systems Computation Conference
(PSCC), June 2016, pp. 1–6.

[20] Y. Liu, W. Yao, D. Zhou, L. Wu, S. You, H. Liu, L. Zhan, J. Zhao,
H. Lu, W. Gao, and Y. Liu, “Recent developments of fnet/grideye: A
situational awareness tool for smart grid,” CSEE Journal of Power and
Energy Systems, vol. 2, no. 3, pp. 19–27, Sept 2016.

[21] Y. Liu, L. Zhan, Y. Zhang, P. N. Markham, D. Zhou, J. Guo, Y. Lei,
G. Kou, W. Yao, J. Chai, and Y. Liu, “Wide-area-measurement system
development at the distribution level: An fnet/grideye example,” IEEE
Transactions on Power Delivery, vol. 31, no. 2, pp. 721–731, April 2016.

[22] E. F. C. Grabovski and S. A. Mussa, “Three-phase frequency estimator in
smart grid applications: Practical issues using fpga,” in 2017 IEEE 26th
International Symposium on Industrial Electronics (ISIE), June 2017,
pp. 175–179.

[23] L. Miao, G. Wei, X. Fang, and J. Risheng, “The strategy of the voltage
control in smart grid based on modern control method and fpga,” in 2015
34th Chinese Control Conference (CCC), July 2015, pp. 8964–8968.

[24] N. Nila-Olmedo, F. Mendoza-Mondragon, A. Espinosa-Calderon, and
Moreno, “Arm+fpga platform to manage solid-state-smart transformer
in smart grid application,” in 2016 International Conference on ReCon-
Figurable Computing and FPGAs (ReConFig), Nov 2016, pp. 1–6.

[25] G. Koutsandria, R. Gentz, M. Jamei, A. Scaglione, S. Peisert, and
C. McParland, “A real-time testbed environment for cyber-physical
security on the power grid,” in Proceedings of the First ACM Workshop
on Cyber-Physical Systems-Security and/or PrivaCy, ser. CPS-SPC ’15.
New York, NY, USA: ACM, 2015, pp. 67–78. [Online]. Available:
http://doi.acm.org/10.1145/2808705.2808707

[26] K. Candelario, C. Booth, A. S. Leger, and S. J. Matthews, “Investigating
a raspberry pi cluster for detecting anomalies in the smart grid,” in 2017
IEEE MIT Undergraduate Research Technology Conference (URTC),
Nov 2017, pp. 1–4.

[27] S. J. Matthews and A. St. Leger, “Leveraging single board computers for
anomaly detection in the smart grid,” in 2017 IEEE 8th Annual Ubiq-
uitous Computing, Electronics and Mobile Communication Conference
(UEMCON), Oct 2017, pp. 437–443.

[28] A. St. Leger, J. Spruce, T. Banwell, and M. Collins, “Smart grid testbed
for wide-area monitoring and control systems,” in 2016 IEEE/PES
Transmission and Distribution Conference and Exposition (T D), May
2016, pp. 1–5.

[29] “Ieee standard for synchrophasor measurements for power systems,”
IEEE Std C37.118.1-2011 (Revision of IEEE Std C37.118-2005), pp.
1–61, Dec 2011.

[30] “IEEE standard for synchrophasor data transfer for power systems,”
IEEE Std C37.118.2-2011 (Revision of IEEE Std C37.118-2005), pp.
1–53, Dec 2011.

[31] Highcharts. (2017) Highcharts api. [Online]. Available:
https://api.highcharts.com/highcharts/

[32] J. Geerling. (2018) Raspberry pi dramble: Power consumption
benchmarks. [Online]. Available: https://www.pidramble.com/wiki/
benchmarks/power-consumption

[33] MagPi:the official Raspberry Pi magazine. (2018) Raspberry pi 3b+
specs and benchmarks. [Online]. Available: https://www.raspberrypi.org/
magpi/raspberry-pi-specs-benchmarks/

