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Abstract—The rapid detection of anomalous behavior in SCADA systems such as the U.S. power grid is critical for system resiliency
and operator response in cases of power fluctuations due to hazardous weather conditions or other events. Phasor measurement
units are time synchronized devices that provide accurate synchrophasor measurements in power grids. The rapid deployment of
PMUs enable improved real-time situational awareness to grid operators through wide area measurement systems. However, the
quantity and rate of measurements obtained from PMUs is significantly higher than traditional devices, and continues to grow as more
are deployed. Efficient algorithms for processing large-scale PMU data and notifying operators of anomalies is critical for real-time
system monitoring. In this paper, we propose a novel, two-step anomaly detection approach that processes raw PMU data using the
MapReduce paradigm. We implement our approach on a multicore system to process a dataset derived from real PMUs containing
4, 500 PMUs (∼ 18 million measurements). Our experimental results indicate the proposed approach detects constraint and temporal
anomalies in under three seconds on 8 cores. Our work demonstrates the applicability of MapReduce for designing anomaly detection
algorithms for the smart grid, and motivates the creation of novel MapReduce approaches for other SCADA applications.

Index Terms—MapReduce, Wide Area Monitoring Systems, Anomaly Detection, ICS/SCADA, multicore, Phasor Measurement Units
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1 INTRODUCTION

SMART grid technology is being introduced to im-
prove reliability, resiliency, and efficiency of the

power grid. This can be very beneficial under extreme
circumstances (i.e. large weather events) in enabling
operators or automated controllers to respond quickly to
events. Many online and offline smart grid applications
are currently being researched and developed [1].

Offline examples include baselining power system
performance, event analysis, and model development.
Online examples include Wide Area Monitoring Systems
(WAMS), Wide Area Control Systems (WACS), State
Estimation (SE), and dynamic line ratings. Some online
applications are performed in real-time (WAMS) while
others are not, or cannot be, performed in real-time
(SE). Real-time analysis must be faster than power grid
operator control actions. We define real-time as being
less than five seconds, which falls into the definition
of real-time in existing literature [2]. Rapid anomaly
detection, through PMU data analysis, in WAMS and
notification to power grid operators are most beneficial
in real-time. While some of these applications currently
exist in power grids, the advent of smart grid technology
and wider deployment of PMUs allow for enhancement
of existing applications and the development of new
applications as discussed in [3], [4], [5].

Modern situational awareness tools can be improved
through the use of real-time synchrophasor data [1].
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However, the integration of large numbers of PMUs into
a smart grid causes a glut of synchrophasor data that
must be processed quickly to ensure real-time response
to anomalies. In this paper, we present novel MapReduce
algorithms that leverages the data fidelity and accuracy
of PMU data to provide robust, two-step, anomaly de-
tection. The first step processes the data for constraint
violations. The second step performs temporal analysis
to detect anomalous dynamic behavior within the grid.

We test our approaches on a dataset of over 18 million
measurements derived from real PMUs on a 1000 : 1
scale emulation power grid. Our algorithms are capable
of detecting all anomalies in the dataset in under three
seconds. Alarms are output, indicating each detected
anomaly along with information on what was flagged
as anomalous (e.g. frequency temporal anomaly at a
specific PMU). Further analysis can then investigate
the anomaly (e.g. low frequency, rate of change of fre-
quency, frequency oscillation and damping rate, etc.).
The primary contribution of this work is a novel, com-
putationally efficient, anomaly detection methodology
integrated with the MapReduce paradigm that is suitable
for real-time applications with thousands of PMUs. The
performance of our work shows significant improvement
compared to prior work and can directly benefit system
operators by providing a solution to the expected PMU
big data issue in WAMS. We believe our work can
help developers create scalable algorithms for detecting
anomalies for other SCADA systems as well.

The rest of the paper is organized as follows. Sec-
tion 2 provides background information on WAMS
and MapReduce. Section 3 outlines our approach for
anomaly detection. Data collection and results are in Sec-
tions 4 and 5 respectively, and we conclude in Section 6.
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2 BACKGROUND

This section provides background information on Wide
Area Monitoring Systems (WAMS) augmented with
PMUs and related work in this area. We also discuss the
MapReduce paradigm, including its advantages, com-
mon implementations, and the Phoenix++ MapReduce
framework that was used to implement the algorithms
described in this work.

2.1 Wide Area Monitoring with PMUs
Analyzing telemetry data to detect abnormal conditions
(i.e. anomalies or alarm events) is a key tool for pro-
viding situational awareness to power system operators.
Traditional SCADA systems include tools for perform-
ing this analysis. One drawback to traditional methods
and sensors (which do not incorporate PMUs) is that
measurements are acquired on the order of seconds and
are not time-synchronized. This limits how rapidly situ-
ational awareness tools can perform analysis and notify
system operators of an alarm event. Additionally, the
data rate limits the ability to detect temporal anomalies
that occur between data samples (e.g. low frequency
oscillations as discussed in [6]).

PMUs are time synchronized devices that provide
synchrophasor measurements for use in power grids.
This technology provides more accurate and frequent
measurements (up to 60 per second) as compared to
traditional transducers integrated into SCADA systems.
The rapid deployment of PMUs improves real-time situ-
ational awareness to power grid operators. According
to [4], there were fewer than 500 PMUs installed on
North America’s transmission grid in 2009; none were
being used for real-time situational awareness. Today,
nearly 2, 000 PMUs provide real-time grid data to control
room operators and engineering applications [4]. The
number of deployed PMUs is expected to continue to
increase at a rapid rate.

While the availability of PMU data provides opportu-
nity for improving grid operation, the amount of raw
data provided is increasing at a rapid rate as PMUs
are deployed. As a result, fast and efficient algorithms
for processing PMU data and notifying operators of
anomalous conditions is integral for real-time system
monitoring tools with large amounts of PMUs.

There is much research into integrating synchrophasor
data with situational awareness tools, and some tools are
available for use today. For example, the Real Time Dy-
namics Monitoring System (RTDMS) has the capability
of integrating PMU data [7] for constraint violations and
model based analysis. According to RTDMS literature at
the time of this writing, the largest implementation of
PMUs is through a Californio ISO project with 85 PMUs.
A commercially available package e-terravision [8] has
similar capability for PMU integration. However, nei-
ther of these tools have reported being applied to an
implementation containing a large number of PMUs
(hundreds to thousands within a single operating area),

Fig. 1. Wide Area Monitoring System Concept.

or provided specific details on their anomaly detection
approaches.

The concept of a WAMS is shown in Figure 1. A num-
ber of PMUs are installed into a system for monitoring
the power grid. Data from these PMUs are send to a
Phasor Data Concentrator (PDC) which aggregates and
time aligns the data, stores data, and provides an output
data stream. This data could go directly to applications,
or to other data aggregators (e.g. Super PDCs). A realistic
scenario for a large deployment of PMUs is a large
number of PDCs networked and working in tandem to
provide a PMU data stream to WAM applications. PMUs
can provide data at rates up to 60 Hz and provides
excellent fidelity and accuracy for anomaly detection.

2.2 Related Work
There has been some, albeit limited, research explored
into parallel computing on multicore architectures as
applied to the smart grid. Peng et. al. use OpenMP [9]
to parallelize power oscillation monitoring using small,
simulated data sets (less than 1000 samples) [10]. Giun-
toli et. al. use OpenMP to assess power grid reliability
with Monte Carlo Methods on a simulated power grid
implemented on a multicore system [11]. Jin et. al. de-
sign a multicore approach for contingency analysis [12],
which is a model-based analysis tool that would be
applied after anomaly detection and state estimation are
performed.

To the best of our knowledge, we are the first re-
searchers to propose MapReduce algorithms for real-
time anomaly detection on the smart grid. Other re-
searchers have used Hadoop MapReduce for analyzing
synchrophasor data, but not in a real-time context. For
example, researchers at TVA [13] used Hadoop MapRe-
duce [14] for historical analysis of 25 terabytes of syn-
chrophasor data over four years. For real-time analysis,
Hadoop is a suboptimal choice owing to the amount
of data required for analysis to overcome the overhead
of writing to the distributed file system. For example,
Edwards et. al. [15] note that their serial approach is
faster than their parallel Hadoop approach, owing to the
small size of the data. Bach et. al. [16] performed analysis
on Electronic Data Recorder (EDR) data, but note that
their Hadoop application is only superior to their serial
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application after the data size grows past 6.2 GB. While
Khan et. al. [17] use Hadoop to parallelize the analysis
of sycrophasor data, the fastest their approach ran on
their 8-node cluster was approximately 8 minutes [17]
on 16 million simulated measurements. In contrast, our
approach takes under 3 seconds to process 18 million
real measurements on a single multicore server.

Interrante and Aggour [18] present work similar to
ours and implement a small signal ocillation detection
(SSOD) algorithm and demonstrate how readings from
up to 500 PMUs sampling at 60 Hz can be analyzed
by a single multicore machine. Our work supports the
findings in their paper, and demonstrates how measure-
ments from 4, 500 PMUs can be analyzed by a larger sin-
gle multicore machine using MapReduce. Zhou et. al. [2]
discuss real-time anomaly detection (called “triggers” in
their work) within the FNET/GridEye framework, to
detect anamolies for further processing. However, their
results, using Apache Spark framework, focus on the
post processing of anomalies and do not describe the
performance of their trigger algorithms using a large
number of PMUs. Based on discussion in [2], it appears
that the number of PMUs used is 200. In comparison, the
methodology presented in this work could be leveraged
to provide triggering for thousands of PMUs in real-time
within the FNET/GridEye framework, or other similar
WAMs.

2.3 Our Contributions
To be precise, our unique contributions to this problem
space include:
• Investigation of anomaly detection with large scale

deployment of real PMUs and 18 million real mea-
surements (big data problem).

• Development of a novel, computationally efficient,
model-free anomaly detection scheme for syn-
chrophasor data which is robust in the presence of
expected PMU measurement error.

• Description of a MapReduce algorithm and applica-
tion for real-time anomaly detection in smart grids.

Model-free methods which analyze raw (or minimally
processed) PMU data are more suitable for real-time
applications as compared to tools that require non-linear
power system models (e.g. state estimation [19], fault de-
tection and identification [20]). Some examples of model-
free methods include data mining voltage magnitude
measurements using a Density-Based Spatial Clustering
of Applications with Noise [21], classifications of dis-
turbances and cyber attacks using time synchronized
data [22], and applying temporal analysis of PMU data
to detect indicators of instability [23].

Most model free methods are based on statistical anal-
ysis of PMU data to detect, and/or identify anomalous
behavior. An issue of these data mining approaches is
managing and processing large amounts of data quickly
enough for real-time applications. The approach in this
work is a model-free technique that can very rapidly

Fig. 2. MapReduce Canonical WordCount Example.

identity constraint based and temporal anomalies from
raw PMU data. Our approach can identify the presence
of an anomaly, and type of anomaly (e.g. voltage or fre-
quency anomaly, and constraint or temporal anomaly),
at a particular location based on PMU location.

Any anomaly that can be observed by PMU measure-
ment data can be detected by our approach. Examples
include rapid changes in system voltages or currents
due to an unexpected switching event (physical anomaly
or a cyber-attack taking a control action), frequency
oscillations (generator trip or load shedding), and gross
measurement error/loss of sensor or data from a sensor
(physical anomaly with measurement hardware or cyber
anomaly with data). The output of this tool can provide
subsets of pertinent data to other tools (e.g. model-
based tools) for further analysis of the anomaly. The
primary limitation of this technique is the requirement
of PMU data. If the PMU data stream is disrupted, then
anomalies associated with that data cannot be detected.

2.4 MapReduce

We use the MapReduce [24] paradigm to guide the
development of our parallel algorithm. MapReduce is
designed for efficient processing of large datasets over
distributed architectures [24], [14]. MapReduce’s attrac-
tion lies in its simplicity; to utilize MapReduce, pro-
grammers are required to implement only two func-
tions: map() and reduce(). The underlying scheduling
framework automates the parallelization of these tasks
on the underlying architecture.

Traditional libraries for parallelism (such as MPI [25]
and OpenMP [9]) require developers to explicitly man-
age synchronization and communication constructs in
their code. Ensuring that a parallel program has no
errors can require more code than the basic algorithm it-
self; the extra complexity can lengthen development and
deployment times. Programming GPUs is also notori-
ously difficult, requiring quite a bit of effort to optimize.
For applications that are meant to be extensible by non-
computational experts, a framework that is relatively
easy to program and optimize is essential. Leveraging
MapReduce can enable SCADA programmers to develop
scalable alarm detection approaches efficiently and in
less time than the alternatives.

To illustrate MapReduce, we discuss the canonical ap-
plication WordCount. In WordCount, the goal is to cap-
ture the set of unique words in a collection of documents
and their associated frequencies. Figure 2 illustrates how
WordCount is parallelized using MapReduce. In this
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example, we assume that there are three instances of the
map() and reduce() functions respectively. For sim-
plicity, we use the opening to Hamlet’s famous soliloquy
as input.

During the Map phase, each instance of the map()
function (mapper) takes as input a block of text (or a set
of files) and produces an intermediate set of (key, value)
pairs. In the case of WordCount, the output (key, value)
pairs contain a single word and an associated count of
1. For example, mapper 1 takes the block of text “to be”
as input, and outputs the (key, value) pairs of (to,1) and
(be,1). Notice that all mappers execute independently of
each other; this allows them to be executed in parallel.

The (key, value) pairs form the input to the com-
biner, which aggregates the intermediates to form
(key, list(value)) pairs. For example, while the interme-
diate (to,1) was separately emitted by mappers 1 and
3 in our example, they are aggregated by the combiner
into the (key, list(value)) pair (to,[1,1]). We note that the
Map phase and Combiner phase can occur concurrently;
however, both phases must complete before the begin-
ning of the Reduce phase.

In the Reduce phase, each instance of the reduce()
function (reducer) takes its assigned (key, list(value))
pairs and performs a reduction operation on each, pro-
ducing a final (key, value) pair. In the case of Word-
Count, the reduction operation is addition. For example,
reducer 3 sums the values in the (key, list(value)) input
(be,[1,1]) to form the final (key, value) pair (be, 2). In
contrast, reducer 2 is assigned the (key, list(value)) pair
of (not,[1]); it simply emits (not,1). Note that all reducers
run independently and in parallel. At the conclusion of
the Reduce phase, we have the set of unique words in
our input and their associated counts.

2.5 Phoenix++

Google and other companies use MapReduce to process
terascale or petascale data over large distributed clusters.
With smaller datasets however (e.g. 1 to 2 GB), large-
scale implementations of MapReduce such as Hadoop
may be counterproductive, due to the overhead of writ-
ing intermediates to the distributed file system. How-
ever, this does not mean that MapReduce is inapplicable
to smaller datasets; the strength of MapReduce lies in its
abstraction, enabling developers to deploy parallel solu-
tions with relative ease. In these cases, it is appropriate
to take a closer look at MapReduce implementations for
other architectures, such as GPU and multicore.

In the context of our work, we use Phoenix++ [26],
an open-source multicore implementation of the MapRe-
duce framework. Phoenix++ was developed by re-
searchers at Stanford University. Critically, intermediates
are stored in shared memory rather than being written
to disk. The authors demonstrated good speedups with
several applications [26], including the aforementioned
WordCount example.

Fig. 3. Anomaly Detection Workflow.

Fig. 4. Example Time Slice of Data Highlighting Two
Windows for Voltage Magnitude Measurements.

3 ANOMALY DETECTION

Figure 3 gives an overview of our Anomaly Detection
approach. From the PDC, we extract “time slices” of
data containing a predefined numbers of windows of
measurements to monitor for alerts. For example, we
show a sample time slice of five minutes in Figure 4.
Highlighted in the figure are two windows of 120 mea-
surements (2 minutes) each. The data within the time
slice is organized in a comma separated value (CSV) file.
The CSV file serves as input to our constraint detection
algorithm (Section 3.4.1). If alarm events are discovered,
they are immediately communicated to the grid operator
via a user interface (UI) or can be passed on to other
near real-time applications as discussed in [2]. If the
data passes the checks in constraint detection algorithm,
it gets inputted into the temporal detection algorithm
(Section 3.4.2). Any alarm events are once again com-
municated to the grid operator or other applications
for further analysis. Regardless of alarm events, data
is placed in a database (DB) for archival storage. In
the subsections below, we describe the measurements
used to detect anomalies, the methodology of anomaly
detection, and our anomaly detection algorithms, in
greater detail.

3.1 Power System Measurements
The key measurement device used in this work are

PMUs. For the purposes of anomaly detection, voltage
and current phasors, and frequency measurements are
analyzed. Measurement error is inherent in this process.
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TABLE 1
Observed Measurement Errors For SEL421 PMU.

Measurement Typical Error Full Range Error

Voltage Magnitude 0.091% 0.125%
Current Magnitude 0.356% 0.397%

Frequency 0.70 mHz 5.0 mHz

A measurement, x(n), containing components of the true
value being measured, x, and the measurement error,
v(n), is expressed in Equation 1:

x(n) = x+ v(n) (1)

Expected deviation from the true value can be quan-
tified via a percent error specification for a measure-
ment device. Measurement error can be modeled with a
random variable (normally distributed random variables
were used in this work). For smart grid applications
using PMU data, measurement error is induced by
the transducers, which step down voltage and currents
to levels suitable for the PMU, and the PMU itself.
The frequency measurement provides a scalar quantity
corresponding to the measured frequency at the PMU
location. Phasor measurements are complex quantities. A
phasor measurement (Equation 2) is in polar coordinates
where a phasor measurement of phasor X is comprised
of two quantities: A magnitude, X , and a phase angle θ:

X = |X|6 θ = X 6 θ (2)

IEEE synchrophasor standards C37.118.1-2011 [27] and
C37.119.2-2011 [28] were developed to facilitate the de-
velopment and interoperability of PMUs. These stan-
dards defined phasor measurements, required accuracy
of the measurements, and the communication protocol
for transmitting measurement data, among other items.
The accuracy standard for the PMU is established in
terms of Total Vector Error (TV E), which takes into
account magnitude and phase deviations between the
measured phasor and the actual phasor. It is quantified
by Equation 3 [29], and must be less than 1% for all of
the conditions specified in the C37.118 standard:

TV E(n) =
|XMEAS(n) − XTRUE |

|XTRUE |
× 100%, (3)

where XMEAS(n) is the phasor measurement and
XTRUE is the true phasor value. The presence of mea-
surement error must be accounted for in anomaly de-
tection as the true values cannot be known explicitly.
While the TVE is specified to be less than 1% by the IEEE
standard, in application the error of commercial PMUs
can be much less. Pacific Northwest National Laboratory
conducted a performance evaluation for SEL 421 PMUs
and determined the data depicted in Table 1 [30].

For this work, the full range error from PMUs was
assumed (worst case). We also assumed that class 0.5
transducers (maximum error of 0.5%) are used. Lastly, it

was assumed that instrumentation errors from transduc-
ers would not affect frequency measurement. As a result
the expected measurement error is 0.625% for voltage
magnitude measurements, 0.897% for current magnitude
measurements, and an absolute error of 5.0 mHz for
frequency measurements. These error figures and the
PMU measurement model were used to create numerous
scenarios to develop, test, and benchmark performance
of the proposed temporal anomaly detection scheme.
In application, PMUs will stream measurement data at
a specified rate. More specifically, the synchrophasor
standard specifies measurement rates of 10, 12, 15, 20,
30, or 60 Hz for 60 Hz electrical systems. For this work
a measurement rate of 60 Hz was used.

3.2 Constraint Anomaly Detection

The constraint anomaly detection scheme in this work
monitors PMU data at specified time slices and checks
voltage magnitude, current magnitude, and frequency to
see if it is within a predetermined acceptable range. This
approach works well as a rapid analysis of power system
state. Under normal operating conditions, node voltages
will be within a well-defined range, frequency will be
very close to nominal, and current magnitudes should
be below equipment ratings and around an estimated
value based on system operation. For example, if a line
is in service and transmitting a scheduled amount of
power, the measurement should be indicative of this. It
is important to note that bad or missing data will also
set off the anomaly detector in our approach. Further
analysis, e.g. state estimation, may be required to make
the determination if the data is reflective of the power
system state, or a bad measurement.

3.3 Temporal Anomaly Detection

We define a temporal anomaly as a rapid shift (or oscil-
lation) in the measured value within a given temporal
time frame. The temporal anomaly detection scheme
developed in this work tracks temporal variation of
voltage magnitude, current magnitude, and frequency
and determines if deviation from nominal (or expected)
operation occurs. Specific items of interest in power
systems include change in frequency and oscillations in
frequency. Frequency anomalies are indicative of genera-
tor or line tripping, load shedding, and potential stability
issues. Additionally, rapid changes of voltage magni-
tudes or current magnitudes are indicative of problems
(e.g. voltage stability) or some action being taken within
the power grid (e.g. a line tripping will show a step
change from a nonzero current magnitude to zero, and
a capacitor bank or tap changing transformer operating
will show a step change in voltage magnitude). This
detection algorithm can also help identify bad data or
confirm that commanded control actions have occurred
by monitoring the measurements for an expected re-
sponse without the need for state estimation. In other
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Fig. 5. Temporal Anomaly Detection Examples for Fre-
quency Measurements.

words, the focus here is on detecting anomalies in real-
time as opposed to near real-time as in SE. As previously
mentioned, PMU data is continuously streaming at a
specified rate. The concept of temporal anomaly detec-
tion used here is to analyze finite sets of this data across
a predefined time window. More specifically, the Fano
factor is calculated for each set of data (Equation 4):

F =
σ2
W

µW
(4)

where σ2
W is the variance calculated from data in

the window, µW is the mean value from the data in
the window. The Fano factor is a good indicator of
dispersion across a window of data which is used here
to indicate an anomaly in the power grid based on PMU
data.

The general approach was to develop a baseline of
steady-state system operation by calculating the Fano
Factor with measurement error. Significant deviation
from this baseline is then indicative of an anomaly.
A number of cases, representative of aforementioned
concerns in power systems, were studied for frequency,
voltage magnitude, and current magnitude to validate
this approach of anomaly detection. For frequency, the
deviation from the mean frequency was used with the
magnitude of the Fano factor as it can be negative with
these data sets. A number of cases with resulting Fano
factors are shown in Figure 5.

The first plot shows a data set of 120 measurements
spanning two seconds. The data was generated by
adding normally distributed measurement noise, corre-
sponding to PMU measurement model and defined mea-
surement errors, onto a nominal frequency. One hundred

Fig. 6. Temporal Anomaly Detection Examples for Ramp
Frequency Measurements.

trials (windows of data) were developed and analyzed.
The Fano Factor magnitude was never above 0.0004 for
the baseline. In order to properly detect anomalies, the
F -value of an anomalous event must be discernible from
this value. One stability concern in power systems is the
presence of low frequency oscillations and, if present,
the damping of these oscillations. One case in Texas
was reported on in [5]. The oscillations observed in
that work was used as an example here. Three oscilla-
tion cases were studied: no damping (fixed magnitude
of oscillation) positive damping (decaying oscillation),
and negative damping (growing oscillation). 100 trials
were performed for each case with a 3.3 Hz frequency
oscillation with a 10 MHz initial amplitude. The Fano
factor range observed across 100 trials are shown for
each case. The oscillations can clearly be detected for all
three cases as the minimum values are three orders of
magnitude larger than that of the base case. Additionally,
the growing oscillation (which would be of great concern
in regards to system stability) exhibited a consistently
larger Fano factor than the decaying oscillation. As
such, the magnitude of the Fano factor can indicate the
severity of the event. A similar set of test cases was
performed with a ramp of frequency change in addition
to the oscillations. Slight changes of system frequency
are expected as generators participating in automatic
generation and control respond to control signals. As a
result, it is important to discern between an oscillation
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Fig. 7. Temporal Anomaly Detection Examples for Volt-
age Magnitude Measurements.

and expected frequency changes. As shown in Figure 6,
all oscillation cases exhibit a Fano factor at least an order
of magnitude above the ramp frequency. Additionally,
the ramp can be detected from a constant frequency
(baseline case). In summary, our proposed approach can
clearly delineate between a constant frequency, slow
ramp change of frequency, and larger frequency events
(oscillations and rapidly changing frequency) with real-
istic PMU data. The window width will have some effect
on the Fano factor values. Experimentation with window
widths has shown that the anomalies of interest can be
clearly detected assuming a change is observed within
the window. However, the actual Fano factor values will
change. In application, care must be taken to obtain an
appropriate baseline for a given window width.

Test cases for voltage magnitude and current magni-
tude are shown in Figures 7 and 8 respectively. Three
scenarios were studied and compared to a baseline: step
changes at various times in the window, an impulse
change with one data point far from nominal (this is
indicative of a bad or missing measurement), and a
ramp change. The focus of these studies was to see
how minute of a change could be detected from a
baseline. In summary, the impulse is very easy to detect

Fig. 8. Temporal Anomaly Detection Examples for Cur-
rent Magnitude Measurements.

and changes of 0.02 per unit for voltage magnitude
and 0.03 for current magnitude can be detected using
the Fano factor approach. These marginal changes are
far lower than what would be concerning for power
grid operators. Additionally, this shows that anomalies
can begin to be detected with a single measurement
point and location of the anomaly in the window is
not imperative to detecting an anomaly. However, the
position of the anomaly in the window will have an
effect of the Fano factor magnitude. As a result, the Fano
factor will not be a reliable indicator of the magnitude
of the change/anomaly, but a robust indicator that an
anomaly has occurred and with what measurement. Raw
data from the window can be then further analyzed to
determine the nature of the anomaly.

Note that the actual Fano factor limits will be de-
pendent on the the power system, acceptable lim-
its/operating conditions of the power system, and the
window width. Representative examples shown here
confirm the capability and applicability of using this
approach to detecting anomalies in power systems using
PMU measurement data. Application with real PMU
data is shown in the results section.
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Fig. 9. Constraint Anomaly Detection Algorithm.

3.4 Anomaly Detection Algorithms

The input to both algorithms is a CSV file consisting
of a time slice of data outputted from the PDC, along
with an operator-designated file of constraints. For our
1000 : 1 scale-emulation of a system with a nominal
26.3 kV phase voltage, a voltage measurement triggers
an alarm event in our constraint algorithm if it is above
27.6 kV or under 25 kV. Current measurements must
be below the rated value of 2000 Amperes. Prior to
execution of the MapReduce portion of the code, these
operator-designated constraints are loaded into a hash
table that resides in shared memory.

Each line of the CSV file is composed of of a signal
ID, a timestamp, and a raw measurement. The signal ID
is in reality a unique hash that represents a particular
PMU and type of measurement. For the figures in the
paper, we replace the hash with a string (e.g. A_VOLT,
for the voltage measurement from substation A). Note
that the actual collected data and the operator-provided
constraint file contain actual hash values.

3.4.1 Constraint Anomaly Detection Algorithm
Figure 9 gives an overview of our MapReduce algorithm
for detecting constraint anomalies. Each mapper is as-
signed a chunk of the input, where chunk boundaries are
along lines in the file. For example, in Figure 9, mapper
1 is assigned the first three lines of the file, mapper 2 is
assigned the next three lines, and mapper 3 is assigned
the last four lines in our example CSV file. Each mapper
then processes it assigned input line by line, looking up
line’s signal ID in the hash table, and checking to see if
the associated value falls within the allowable window
set by the operator. If it does, the line is silently ignored.

In the case of mapper 2 in Figure 9, none of its
values are consider anomalous. Therefore, the mapper
emits nothing. In contrast, mapper 1 and mapper 3
have a current and two voltage readings that violates
the set of constraints. These are emitted as (signalID,
measurement) (key, value) pairs to the combiner. The
combiner sorts and aggregates all the anomalies. These
are then outputted to the user interface for review by
the grid operator. Unlike our next algorithm, there is no
reduce phase.

3.4.2 Temporal Anomaly Detection Algorithm
Our MapReduce algorithm for detecting temporal

anomalies is more complicated. Note this algorithm only
runs if no constraint anomalies are found. Figures 10

Fig. 10. Map Phase of Temporal Anomaly Detection
Algorithm.

Fig. 11. Reduce Phase of Temporal Anomaly Detection
Algorithm.

and 11 illustrate our MapReduce algorithm for detecting
temporal anomalies. In this example, none of the listed
values fall outside the allowable range for our system.
However, there are some fluctuations that may be cause
for concern.

During the Map Phase, each mapper takes its assigned
block of the memory-mapped file and emits (key, value)
pairs where the key is a signal ID, and the value is
tuple consisting of the timestamp and measurement. In
our previous algorithm, we only emit (key, value) pairs
in case of anomalies. In our temporal approach how-
ever, every single measurement (despite not displaying
anomalous characteristics by itself) could be part of a
larger fluctuation pattern, and therefore must be emitted
to the combiner.

The combiner sorts the intermediates into
(key, list(value)) pairs, aggregating the intermediates
by common signal ID. For example, while mappers
1 and 2 in Figure 10 independently process current
measurements from Station B, these are all combined
together into a single (key, list(value)) pair by the
combiner. We note that the values in the list(value)
portion of each pair outputted by the combiner are
sorted by time stamp; this is crucial for our next phase.

Unlike our constraint algorithm, our temporal
anomaly detection algorithm has a Reduce phase.
During the Reduce phase, each reducer takes the set
of (key, list(value)) pairs assigned to it and computes
the associated Fano Factor (F ). While in Figure 11 we
calculate the Fano Factor over all the measurements,
in reality, we slide a window of 1 second increments
over the entire array of values, calculating the Fano
Factor for each window. If the values in any window
are anomalous, they are emitted to the grid operator.
Voltage and Current magnitude measurements are
normalized prior to calculating the Fano Factor.

For example, in Figure 11, the calculated Fano Factor
for A_VOLT is F = 0.047247, which is above our allow-
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Fig. 12. Block Diagram of Smart Grid Test-Bed.

able threshold of 0.0001 for voltage. Thus, an alarm event
is triggered which is communicated to the grid operator.
Likewise, B_CURR has a Fano Factor of F = 0.170407,
which is above the allowable F threshold for current
(0.15). In contrast, C_CURR has a Fano Factor of F =
0.014142, which is below our maximum threshold. As a
result, no alarm event is triggered for this signal ID.

4 DATA COLLECTION

PMU data was required for the development and testing
of the proposed approach to anomaly detection. A Smart
Grid Test-Bed has been developed at the United States
Military Academy for education and research. More
specifically, the system was designed for research related
to Wide Area Monitoring and Control Systems [31]. Real
PMU data was obtained from this test-bed and used for
this work.

4.1 Smart Grid Test-Bed

A block diagram of the Smart Grid Test-Bed is shown
in Figure 12 [31] and a picture of the test-bed in Fig-
ure 13 [31]. The power system modeled, and emulated,
in the test-bed is based on a seven bus 46 kV (line
voltage) three-phase distribution grid containing nine
transmission lines. The system model was developed
based on a real world distribution grid in the eastern
United States. The power system is emulated on a small
scale by scaling voltage and current levels by a factor
of 1000. In other words, the line voltage in the system
is 46 V and the maximum line currents are 2 Amperes
in the test-bed. The test-bed also contains measurement
equipment (PMUs and voltage/current transducers), re-
lays for protection and control, and a PDC for automated
data acquisition, archiving, and serving data to the end
user terminal.

A communication network consisting of physical and
simulated components which interconnects the PMUs,

Fig. 13. Smart Grid Test-Bed.

PDC, and end user terminal was also developed [32].
Eight of the Schweitzer Engineering Lab (SEL) Relays
installed in the test-bed include IEEE C37.118 compliant
PMUs which are time synchronized to GPS satellite
clocks. This hardware was chosen to provide primary
relay protection in addition to PMU measurements. The
PMUs feature level 1 compliance to the standard and
have two PMU channels (six PTs and six CTs) per PMU.
However, only one channel is currently being used on
each relay as this provides system observability within
the testbed (it should be noted that the anomaly detec-
tion in this work does not rely on system observability).
These relays are of the same manufacturer, and four
of the same model, that were tested to produce the
error data shown in in Table 1. The end state of the
proposed anomaly detection system is to operate in
real-time within this test-bed and integrate with WAMS
applications. PMU data was obtained from this test-bed
to develop, test, and benchmark this work.

4.2 PMU Data
Each of the eight PMUs were configured to report the

following data at a 60 Hz rate: frequency, rate of change
of frequency, A phase voltage phasor, A phase current
phasor, a time stamp for the data (seconds of century
and factional seconds), and time quality indicator. To
obtain data for this work, the test-bed was run for
various periods of time, under various conditions with
and without anomalies, and PMU data was collected and
archived in the PDC database.

The objective was to obtain large datasets of real PMU
data. For example, the system was run for ∼ 1.5 hours
and a 1.3 GB dataset with over 18 million measurements
was obtained for testing and validating the proposed
anomaly detection scheme. The size of this data was
representative of a large scale power grid with many
PMUs. However, the number of unique signal IDs is
not representative of a large scale system as there are
only eight PMUs. The raw PMU data was processed
to develop a realistic data set for a large scale power
grid with many PMUs. More specifically, each PMU in
the dataset was segmented into 125 sample blocks (∼ 2
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Fig. 14. Running Time of Constraint and Temporal Algo-
rithms on Original Data Set consisting of 8 PMUs.

minutes of data) and unique signal IDs were synthesized
for each block of data. The result was a 1.3 GB dataset
with over 18 million measurements where each PMU’s
data spanned over ∼ 2 minutes with signal IDs from
4, 500 PMUs. Note that the PMU measurement data
was not altered. The anomaly detection algorithm was
conducted with both datasets (original and processed
data) to observe the performance for a larger time set
of data with fewer PMUs as compared to a small time
set of data with a large number of PMUs. The latter
being representative of a real-time anomaly detection
application in a large power grid with 4, 500 PMUs.

5 RESULTS & DISCUSSION

Our anomaly detection source code is written in C++
and utilizes the Phoenix++ MapReduce library. It is
compiled with GCC 4.4.7 and the -O3 optimization flags.
Experiments are run on a Red Hat Enterprise Linux with
quad-core Intel i7-3770 at 3.40 GHz, and 32 GB of total
RAM. Due to hyper-threading, there are 8 virtual cores.
We use the aforementioned dataset collected from our 8
real PMUs from our scale-emulation power grid and the
processed dataset with 4, 500 PMUs. We vary the number
of cores 1 to 8 in increments of 2. For each dataset and
number of cores, the run-time numbers discussed are
derived from an average over 10 independent runs.

There are two version of the temporal algorithm. In
the first, we use a sliding window of one second (60
measurements) over all the measurements. In the second,
we use discrete windows of 1 second each. The running
times for both approaches are roughly equivalent, with
the sliding window approach being slightly slower than
the discrete window approach. For brevity, we highlight
only the numbers for sliding window approach in the
subsection below. The time required to perform temporal
checks is longer than what is required for constraint
checks, owing to the presence of a reduce phase.

Fig. 15. Running Time of Constraint and Temporal Algo-
rithms on Processed Data Set consisting of 4, 500 PMUs.

We also discuss the speedup of our approach as we
increase the number of cores. Speedup is calculated as
Sn = Time(1 core)

Time(n cores) . Ideally, running the algorithm on n
cores would yield a speedup close to n.

5.1 Execution Time on PMU Datasets
We measure the time it takes for our algorithm to detect
all anomalies in the input dataset, both on the raw
dataset derived from our 8-PMU scale emulation power
grid, and the processed dataset consisting of 4, 500
PMUs. Both datasets contain 18 million measurements.
Our results are summarized in Figures 14 and 15. The
x-axis is the number of cores being utilized, while the
y-axis indicates the average run time in seconds.

Figure 14 shows the measured execution time of the
8-PMU dataset. On a single core, we detect anomalies
in 6.32 seconds on average. On 2 cores, that number
decreases to 2.71 seconds, a speedup of 2.33. On 4
cores, it takes 1.53 seconds, a speedup of 4.13. Running
our constraint detection algorithm on 8 cores takes 1.27
seconds, yielding our highest speedup of 4.98.

On a single core, it takes our sliding window temporal
check approximately 12.65 seconds to complete, vs. 11.44
seconds for our discrete approach. On 2 cores, it takes
6.07 seconds, a speedup of 2.08. Increasing the cores
to 4 reduces execution time to 3.56 seconds, yielding a
speedup of 3.55. It takes 2.82 seconds on 8 cores, yielding
our maximum speedup of 4.49.

Figure 15 shows the measured execution time of the
dataset consisting of 4, 500 PMUs. Our constraint algo-
rithm is slightly slower on this dataset, requiring 6.62
seconds on 1 core. The algorithm requires 1.33 seconds
on 8 cores, yielding a speedup of 4.98. We see similar
performance on our temporal algorithm. The temporal
check takes 13.98 seconds on 1 core for the sliding
window approach. On 8 cores, this time reduces to 2.94
seconds, for a final speedup of 4.76.
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Fig. 16. Example of Detected Current Magnitude Tempo-
ral Anomaly.

Fig. 17. Example of Detected Voltage Magnitude Tempo-
ral Anomaly.

To validate this approach, anomalous incidents were
created in the testbed for both the constraint and tem-
poral detection algorithms. The created anomalies were
correctly identified with both detection algorithms. For
example, a rapid load change was created and correctly
detected by the temporal anomaly detection algorithm.
The current magnitude data and Fano factor are shown
in Figure 16. Anomalous behavior in the local power
distribution grid, which is the primary source of power
to the testbed, were also observed and flagged by our
detection algorithms. For example, a rapid change in
voltage magnitude is shown in Figure 17.

5.2 Analysis of Execution Time
Our algorithms can process the dataset and report all
detected anomalies in under three seconds on 8 cores. As
soon as an anomaly is detected it is outputted to the user;
however, the time it takes to report the first anomaly is
dependent on the anomaly’s location in the file. In this
section, we present worst-case asymptotic run time. Let
P denote the number of PMUs, and assume that each
emits M measurements in a given time slice. Thus, the
input dataset consists of P ×M total measurements. On
a system with c cores, the asymptotic run-time for our
parallel constraint algorithm is therefore O(P×Mc ).

Our temporal approach requires longer time. First,
O(P×Mc ) time is needed in the map phase to process
the input into corresponding (key, value) pairs. The
combiner (which hashes and sort the pairs), requires

O(M logM) time. Each reducer then receives M mea-
surements corresponding to a single PMU. Assuming a
window size of W , there are M

W windows. The Fano
factor for each window takes O(MW ) to calculate. So,
for the discrete windowing approach, the reduce phase
takes O((MW )2) time, while the sliding window takes
O(M

2

W ) time. We note that as the window size gets
smaller, the discrete windowing time approaches the
sliding window time. Thus, the total asymptotic run-

time for the temporal approach is O(P×Mc +
P×M2

W

c ).

6 CONCLUSIONS
In this paper we presented a novel, model-free, ap-

proach to processing large sets of PMU data to rapidly
detect anomalies and improve situational awareness in
the smart grid. Our contribution is significant in two
important ways. First, we present two novel MapReduce
algorithms for detecting constraint and temporal anoma-
lies in real-time. Second, we test our approach on real
data collected from a scale emulation of a power grid.

We implement our MapReduce algorithms using
Phoenix++, a shared-memory implementation of the
MapReduce framework. We test our algorithms on a real
dataset of over 18 million PMU measurements, and a
processed dataset representative of a scenario with 4, 500
PMUs. In both datasets, our algorithms are able to detect
anomalies in under three seconds on 8 cores, making
the proposed approach applicable for real-time detection
in smart grid applications. For comparison, China has
future plans to deploy 2, 000 PMUs in their Smart Grid
infrastructure [18]. This transfers the bottleneck of de-
tecting anomalies from the data processing to the latency
of collecting data from the PMUs.

The implications of our work are significant for pro-
tecting the smart grid. First, our use of a multicore
implementation of MapReduce shows that we can lever-
age this paradigm for real-time anomaly detection on
smaller power subsystems; petascale or terascale data
is not needed to attain real-time performance with the
MapReduce paradigm. Multicore systems are less costly
to maintain than clusters, and have lower power and
cooling requirements. For large subsystems that pro-
duce upwards of terascale data, our algorithms can
be implemented in Hadoop, enabling scalability. Future
work includes implementing our algorithms in the smart
grid test-bed WAMS at the USMA and investigating
the performance of our approach on other low-power
architectures such as GPUs and microclusters.
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