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Abstract—Smart Grid Technology is becoming an integral
part of ensuring reliable and resilient operation of the power
grid. The high sample rate and time synchronization of Phasor
Measurement Units (PMUs) can provide enhanced situational
awareness and more detailed information on power system
dynamics as compared to traditional SCADA systems. A smart
grid system must be able to detect alarm events (such as
sudden voltage fluctuations or drops in current) in close to
real-time. However, the communication network and bandwidth
requirements to transfer large amounts of PMU data for real-
time analysis is problematic. In this paper, we propose the use of a
decentralized architecture for rapidly analyzing PMU data using
single board computers to provide energy efficient monitoring
locally in the power grid. This approach reduces communication
requirements and enables real-time analysis. We present a novel
anomaly detection scheme and test our approach on a real dataset
of 1.4 million measurements derived from 8 PMUs from a 1000:1
scale emulation of a working power grid. Our results show that
a single Raspberry Pi is sufficient to analyze data from multiple
PMUs at a rate suitable for real-time analysis.

Keywords: Smart Grid, Single Board Computer, Raspberry
Pi, Anomaly Detection

I. INTRODUCTION

Smart grid technology is enabling improved efficiency,

resilience and reliability in power grids. Phasor Measurement

Units (PMUs) are a key enabling technology. Specifically,

PMUs provide direct measurement of voltage and current

phasors (magnitude and phase angle of an alternating current

waveform), are timestamped via global positioning system

clocks, and can provide measurement rates up to 60 Hz. PMU

integration as compared to traditional transducers provides

more data (measurements), higher measurement accuracy and

measurement correlation through time synchronization.

Many offline and online applications using PMU data are

currently being investigated [1]. Online applications require

acquisition and analysis of data in real-time or near real-time

to provided actionable information to power system operators.

Examples include Wide Area Monitoring Systems (WAMS)

deployed in Texas [2] and India [3]. These projects focused

on integrating PMUs and communication networks to provide

PMU data to existing SCADA systems and develop new

applications based on PMU data.

One online application of great interest is detecting anoma-

lous power grid behavior. For example, detection and notifica-

tion of power and frequency oscillations is identified as one of

the most beneficial uses of PMU data by the North American

Electric Reliability Corporation (NERC) [2]. The additional

data can also enhance real-time situational awareness of power

system operators. However, as more PMUs are deployed it

becomes challenging to transmit and analyze the data, and

provide actionable information in real-time as discussed in [4].

Most WAMS are designed to aggregate all data and analysis

at a centralized server. This requires a robust communications

network and will add latency in anomaly detection as all data

must be transferred prior to analysis.

Compressed sampling can lower the bandwidth require-

ments for WAMS [5]. An alternate solution is to complete the

bulk of anomaly detection as close to individual substations

as possible. In this type of architecture, compute nodes are

networked directly to individual (or collections of) PMUs

and perform anomaly detection; alarm events are then prop-

agated through the network to the centralized controller. The

advantage of this type of distributed architecture is reduced

latency. To enable such an architecture, the compute nodes

must be small, power-efficient, inexpensive, and able to detect

anomalies as data packets arrive. For a PMUs reporting at

60 HZ, a packet must be inspected for anomalies in under

16.67 ms to be real-time.

In this paper, we propose the use of single board computers

(SBCs) for localized anomaly detection. The Raspberry Pi is

a power-efficient, compact and inexpensive device at $35.00.

It consumes approximately 5 watts of power and is roughly

the size of a credit card. We compare the performance of the

Raspberry Pi to a commercial off the shelf (COTS) system

on a real dataset consisting of 1.4 million measurements

from 8 PMUs, derived from a 1000:1 scale emulation of a

working power grid, operating at 60 Hz. Our results show

that a Raspberry Pi can detect anomalies in 70.5 μs and 159.6
μs on 1-phase and 3-phase data derived from a single PMU.

Furthermore, the Pi is capable of detecting anomalies from

8 PMUs in 1.32 ms. Our results indicate that the processing

power of the Pi is sufficient for real-time anomaly detection,

even up to 50 PMUs. This strongly suggests the utility of

the Raspberry Pi and similar SBCs for distributed anomaly

detection in the power grid.

The rest of the paper is organized as follows. In Section II

we give background and related work. We discuss an overview

of the proposed architecture in Section III. The anomaly

detection process is discussed in Section IV. Our results are

shown in Section VI. Finally, we conclude in Section VII.
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Fig. 1. Overview of a PMU based wide area measurement system

II. BACKGROUND

PMU-based WAMS provide an opportunity for enhanced

situational awareness for power system operators as com-

pared to traditional Supervisory Control and Data Acquisi-

tion (SCADA) systems. Information provided to conventional

SCADA systems (such as measurements of voltage and current

magnitudes, system frequency, and power) are asynchronous

in nature and updated on the order of seconds to minutes.

This data is then used to estimated power system topology,

power system states, and provide useful information to system

operators. The rate of data acquisition and asynchronous nature

of the data limits the speed, accuracy and anomaly detection

capability of the subsequent analyses.

One advantage of PMU-based WAMS is the capability of

sub-second sampling rates. Specifically, the IEEE C37.118

Standard [6] supports data rates up to 60 samples per second

for a 60 Hz power system frequency. Higher sampling rates are

encouraged but not required to be compliant with the standard.

The higher fidelity of sampling allows for system operators to

observe, monitor, and take remedial action on power system

oscillations that were previously unobservable with traditional

SCADA tools. For example, the WAMS pilot project in

India [3] had immediate improvements to visualization of

power system dynamics and understanding of system oper-

ation, enhanced real-time situational awareness, visualization

of oscillations, and allow for more thorough offline analysis

and modeling of the power system. An overview of a PMU

based WAMS, derived from the structure of WAMS projects

presented in [2] and [3], is shown in Figure 1.

PMUs are installed throughout the power grid to provide

synchrophasor measurements and connected to local Phasor

Data Concentrators (PDC) via a Local Area Network (LAN).

The purpose of the PDC is to aggregate and time align data

from multiple PMUs, archive data in local storage, and serve

this data to the control center. Multiple PDCs are required

throughout the system based on the location and number

of installed PMUs. A wide area communication network is

required to transmit data from all the PDCs to the super PDC

in the control center, which aggregates and serves all PMU

data to the system operator and WAMS applications. The wide

area communication network is a critical, and challenging,

aspect to implementing a PMU-based WAMs. The PMU

sampling rate used in [3] was 25 samples per second and it

was reported that “for such a high rate of reporting, in general,

a dedicated fiber channel is required for reliability of real-

time data” [3]. The wide area communication requirements

will continue to grow for centralized WAMs systems as PMU

integration continues.

An alternative approach is to process raw PMU data in

a decentralized fashion within the power system and report

usable information (e.g. a reported anomaly or alarm) in real-

time to the system operator. The primary advantages of this ap-

proach are a significant reduction in data transfer requirements

for real-time situational awareness and that the reportable

data can be directly integrated into existing SCADA tools.

A disadvantage to the distributed architecture is that analysis

is limited to a subset of system PMU data. However, such

distributed analysis can augment existing WAMs systems and

provide more timely anomaly detection to system operators.

If PMU data is processed and anomalies identified in real-

time within the grid, anomalies can then be reported directly

to WAMS applications within the latency time of the wide

area communications systems. The centralized architecture

transfers significantly more data from PMUs to the centralized

PDC prior to analysis.

A distributed data analytics approach to WAMS has recently

been presented in [7] which proposes a dedicated data server

for real-time distributed PMU data analytics. The approach

of this work is similar but investigates different algorithms

for anomaly detection and the suitability of a low-cost single

board computer for processing PMU data in a distributed

fashion.

A single board computer (or SBC) is a device in which

the entirety of the computer is printed on a single circuit

board. Unlike microcontrollers, a SBC is a fully functioning

computer, with an operating system, random access memory,

and flash storage. These features enable SBCs to be easily

reprogrammable and capable of more computationally diffi-

cult tasks than microcontrollers. While FPGAs are another

attractive option, SBCS are easier to reprogram and relatively

inexpensive. For example, the Raspberry Pi (arguably the most

popular SBC on the market) costs only $35.00 and features a

1.2 GHz processor and 1 GB of RAM [8].

While SBCs typically have similar System on a Chip (SoC)

processors to those found in smartphones, they are designed

for hardware integration, typically including Ethernet, General

Purpose Input Output (GPIO), and a host of other ports not

typically found on mobile devices. For example, the Raspberry

Pi SBC features 4 USB ports, a HDMI port, and display and

camera standard interfaces in addition to integrated wireless

and bluetooth.

Research on wireless sensor networks have shown that at-

node data processing is critical for lowering their latency and

power consumption [9], as the energy required to transfer the

data often exceeds the amount needed to process the data at

the node. In the context of a power system, we posit that SBCs

can act as so-called “gateway” nodes, performing at PMU
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Fig. 2. Proposed decentralized SBC based PMU anomaly detection architec-
ture

or close to PMU anomaly detection. Other researchers have

shown the feasibility of using the Raspberry Pi for localized

information processing in sensor networks; Bell [10] has a

nice introduction.
Utilizing single board computers for smart grid anomaly

detection supports the notion of energy proportional comput-

ing. Barroso and Hölzle observe that Google servers operate

at peak energy efficiency at peak utilization, concluding that

system architects should develop machines that consume en-

ergy in proportion to the work performed [11]. Da Costa later

showed that combining servers with power-efficient single

board computers in a data center results in a more power

efficient system [12]. We hypothesize that if single board

computers can perform anomaly detection at requisite speeds,

they would do so closer at peak utilization, resulting in

improving the energy efficiency of anomaly detection in the

power grid.

III. SYSTEM ARCHITECTURE OVERVIEW

Recently, Matthews and St. Leger described a novel MapRe-

duce algorithm [13] for real-time anomaly detection for Wide

Area Monitoring Systems of an architecture shown in Figure 1.

Their algorithm was capable of analyzing 45 minutes worth

of data (18 million measurements) derived from 7 PMUs for

anomalies in under three seconds on a multicore commercial

of the shelf (COTS) system. In contrast, this work investigates

the use of power efficient SBCs, such as the Raspberry Pi,

for anomaly detection close to the PMU. Specifically, the

contributions of this work are as follows:

• A description of an inexpensive distributed architecture

capable of real-time anomaly detection in the smart grid.

• The use of single board computers such as Raspberry Pi

for the compute nodes in the aforementioned architecture.

• Achieving real-time anomaly detection on real power

grid data using single board computers.

Figure 2 gives an overview of the proposed decentralized

architecture with a SBC. The SBC, such as the Raspberry Pi,

is connected via Ethernet to the LAN. This provides direct

connection to the PMU data stream in a similar fashion as

the PDC. SBCs would be embedded throughout the power

system. A single SBC per LAN houses local PMUs and a PDC.

The concept is that each SBC streams PMU data from the

LAN and analyzes the data for anomalies in real-time. Each

SBC in the network has copy of the code, and a “constraints”

file containing nominal ranges for synchrophasor measurement

data.

Each PMU in the LAN transmits a data frame, encapsulated

within a single TCP/IP packet, at a rate commensurate to

the reporting rate. For example, a PMU set to report 60

measurements per second (60 Hz reporting rate) will send a

packet of data 60 times per second. This translates to a packet

every 16.67 ms. As per the synchrophasor standard, a data

frame contains a time stamp, phasor measurements, frequency

measurement, rate of change of frequency measurement, and

any analog/digital measurements defined for a given PMU.

For the purposes of the anomaly detection in this work, a

subset of reportable data extracted from a packet is analyzed

for anomalies. Specifically, for a PMU reporting 1-phase, 5
measurements per frame are analyzed; those reporting 3-phase

have 11 measurements analyzed. The SBC receives packets,

extracts the pertinent data frame, then analyzes the frame for

both constraint and temporal anomalies. Triggered anomalies

are then transmitted through the network, eventually reaching

an operator via a user interface.

There are several advantages to the strategy. First, SBCs

are inexpensive and power-efficient, making integrating them

into existing smart grids economical. Second, having data

processed close to the PMU reduces overall latency of the

system, as the bulk of data will be processed by the Raspberry

Pi, rather than being transferred over the network. Lastly, the

described strategy also reduces the total number of measure-

ments that need to processed at any given time, lowering the

computational requirements.

Data collection and testing is derived from a Smart

Grid Test-Bed developed at the United States Military

Academy [14]. The power system emulated in the test-bed is

based on a seven bus three-phase distribution grid. It contains

nine transmission lines with a line voltage of 46 kV. The test

bed is a 1000-scale emulation, with a system line voltage of

46 V and a maximum line current of 2 Amperes. It contains

eight real Schweitzer Engineering Lab (SEL) Relays and IEEE

C37.118 compliant PMUs, time synchronized to GPS satellite

clocks.

IV. ANOMALY DETECTION

As previously mentioned, each PMU sends a packet of

data to a single SBC at a desired reporting rate. Each packet

contains a predefined (based on PMU configuration) data

frame. This data frame consists of a time stamp, phasor

measurements, frequency measurement and a rate of change of

frequency measurement. Each packet also contains a unique
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Fig. 3. A snapshot of the measurements collected from the PMUs.

ID code which identifies which PMU is sending the infor-

mation. The SBC extracts data from the packet to compose

a time series of measurements. Bandwidth requirements per

PMU will depend on reporting rate, communciation protocol

overhead, and configuration of the PMU. Section C.1 in [6]

provides guidance on estimating communication bandwidth

requirements for PMUs.

For example, a PMU reporting 2 phasors at 60 Hz in integer

format requires 40.32 Kbps of bandwidth for data and an

additional 36.48 Kbps for communication protocol overhead

(44 bytes per packet for TCP and 2 bits per byte for asyn-

chronous communication). Summarizing, a single PMU with

this configuration requires a total of 76.8 Kbps of bandwidth.

For this work scaled data representing up to 50 PMUs was

tested for a single SBC. This would require streaming and

extracting data at a rate of 3.85 Mbps in this configuration.

Given the expected performance of the LAN and a 100 Mbps

Ethernet card on the SBC, it is assumed that the extraction of

data from 50 PMUs can occur at line speed.

Given that the SBC can extract data from a small number

of PMUs at line speed, the measurement data is provided to

the SBC in comma separated value (CSV) format for the

context of this paper (see Figure 3). In other words, for

testing purposes the data provided to the SBC has already been

extracted from packets. Each measurement occupies a single

line, and consists of a signal ID, time-stamp, and measurement

values. The signal ID is a 36 character hash that is unique

to a particular PMU and measurement type (i.e., voltage,

current, etc.) The time-stamp has centisecond precision. The

measurement value has double floating point precision.

Our goal in conducting this research was to ascertain

the viability of using single board computers such as the

Raspberry Pi to perform anomaly detection on synchrophasor

data. We have not yet integrated our Pis with our testbed; that

is future work. For our purposes we simulate the stream by

creating subsets of our collected measurement data and loading

that data into memory. Data is read from the stream at a user-

specified reporting rate which correlates to the PMU reporting

rate. For our 60 Hz reporting rate, either 5 or 11 measurements

are read from the stream per PMU at a given time, emulating

the transmission of packet data frames from 1-phase and 3-

phase power systems. To achieve real-time performance, our

algorithm must be able to detect all anomalies in the frames

in under 16.67 ms.

A. Measuring Anomalies

In our work, we concentrate on detecting two different

classes of anomalies: constraint and temporal. A constraint

anomaly is defined as a measured value that is outside a prede-

termined acceptable range which was heuristically determined.

Nominal fluctuations in measured quantities such as voltage,

current, and angle differential are consider normal in power

systems. Detecting measurements that fall outside an allowable

domain of nominal fluctuation is possible at line speed; a

program simply needs to check each measurement against its

range of allowed variation as it is read from a stream.

Temporal anomalies require more data and further process-

ing in order to detect. A temporal anomaly is defined as a

rapid oscillation, or change, in a measurement value within a

given time frame. Thus, while any individual measurement

value does not fall outside the range of allowed variation,

the magnitude of the change within a given period of time is

significant enough to warrant further investigation. Laboratory

experimentation, data analysis, and heuristics were used to

define Fano factor limits for temporal anomalies in this work.

To detect rapid oscillations or temporal changes, we compute

the Fano factor of the measurements in window w. The Fano

factor (F ) is defined in Equation 1:

F =
σ2
W

μW
(1)

where σ2
W is the variance calculated over the window, and

μW is the mean value over that same window. The Fano factor

has previously been shown [13] to be a good indicator of

distribution of measurement data in a given window, and we

use it here to detect anomalies with PMU data. This approach

has shown to be robust in detecting oscillations and step

changes in PMU data.

B. Overview of Anomaly Detection Approach

There are two principle inputs to our program. The first

is an operator-specified constraint file that contains the set of

allowable variations for each measurement and precomputed

Fano factors for each signal ID being tracked. For practical

applications, the acceptable ranges for constraint anomalies

and the acceptable Fano factor values for temporal anoma-

lies must be developed for a specific power system. Offline

analysis of PMU data and historical knowledge can be used

to determine appropriate settings. The second input is the file

used to simulate the data stream.

Prior to running the anomaly detection component, the input

data file is loaded into memory to simulate the stream. Next,

the information in the constraint file is hashed by signal ID.

Each signal ID’s hash record contains the ranges of the allowed

variation and Fano factor.

The anomaly detection procedure is a two step process.

During the first step, a window of p × m measurements is

read serially from the input stream, where p is the number of

PMUs and m corresponds to the number of measurements in

the data frame from each PMU to be analyzed. For clarity,

we refer to each of the read measurements as an event. As

each event is read, it is decomposed into its signal ID, time-

stamp, and value components. The signal ID’s corresponding

hash record is accessed from hashtable C, and the minimum
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and maximum defining the extent of allowed variation is

extracted. The event’s value component is then compared to

this minimum and maximum; if it is out of range, the event

triggers a constraint anomaly.

Regardless of whether or not a constraint anomaly is trig-

gered, the event is inserted into a queue corresponding to its

signal ID. The queue corresponding to a particular signal ID

is also determined by hashing the signal ID. Each queue is

implemented as a circular buffer, and is the same length as the

reporting rate (r). For a reporting rate of 60 Hz, each queue

holds r = 60 measurements. An index variable determines the

next location that the event’s information should be placed.

With every insert, the index is incremented. The modulo op-

erator ensures that the elements in the queue are in sequential

order. There are S total queues, where S corresponds to the

number of unique signal IDs.

In the second step, the program scans over all S queues,

checking for temporal anomalies in each. For each queue, the

associated signal ID is rehashed to access the corresponding

hash record in C, in order to obtain the allowable Fano factor

limit (f ). The program then computes the Fano factor of

the measurements in the queue. If the computed Fano factor

exceeds f , a temporal anomaly is triggered.

C. Analysis of Anomaly Detection Scheme

Let S be the total number of unique signal IDs that is

generated by our p PMUs, m be the number of measurements

received from each PMU with each packet, and r be the

reporting rate. The building of the hashtable C is a one-time

operation that requires O(S) time. The run time of Step 1 is

dependent on the number of events read from the stream, or

p × m. Constant time is required to read an event from the

stream, decompose it into its component parts, and perform

a hash lookup in C. Since a hashtable is used to manage the

S queues, the lookup to the event’s corresponding queue is

also constant time. Lastly, since each queue is implemented

as a circular buffer, insertion of event data into a particular

queue also requires constant time. Thus, the theoretical run-

time of Step 1 is linear with the number of events read from

the stream, or O(p×m).
The time required for Step 2 is heavily dependent on S and

r. For each signal ID, we iterate over the r measurements in

the queue twice to compute the Fano factor. The rest of the

components of the Fano factor computation require constant

time. Therefore, the total time for Step 2 is S × 2r. Thus the

total time required for our approach to process w events over

S unique signal IDs derived from p PMUs is O((p × m) +
(S × r)).

V. EXPERIMENTAL METHODOLOGY

Our anomaly detection code is written in the C language. We

test our anomaly detection approach on a commercial off the

shelf (COTS) system and a Raspberry Pi 3 SBC. Our COTS

is identical to the machine referenced in [13], with a quad-

core Intel(R) Core(TM) i7-3770 CPU @ 3.40GHz and 32 GB

of RAM. The Raspberry Pi has a quad-core ARM Cortex

TABLE I
AVERAGE TIME (IN MICROSECONDS) NEEDED TO DETECT A SINGLE

CONSTRAINT AND TEMPORAL ANOMALY.

1-phase 3-phase
System constraint temporal constraint temporal
COTS 0.14 0.43 0.16 0.44

Pi 1.87 5.09 2.12 5.36

TABLE II
AVERAGE TIME (IN MICROSECONDS) NEEDED TO DETECT ANOMALIES IN

A PACKET.

1-phase 3-phase
System step 1 step 2 total step 1 step 2 total
COTS 5.42 2.85 8.27 5.63 6.38 12.01

Pi 35.7 34.8 70.5 80.6 79.0 159.6

A53 CPU, with a clock rate of 1.2GHz and 1 GB of RAM.

We chose to focus on the Raspberry Pi due to its popularity

and relative inexpensiveness to other commercially available

SBCs. A single Raspberry Pi costs approximately $35.00. In

contrast, the COTS system costs approximately $900.00.

Using a KillAWatt [15], we determine the Raspberry Pi

consumes approximately 4.5 Watts of power when running

our application. Compare this to the COTS system, which con-

sumes roughly 50 Watts of power. Despite the COTS having

significantly more computing capability, we hypothesized that

the more power-efficient Pi would still be able to perform

anomaly detection at a rate corresponding to real-time.

We test our approach on a real dataset of 1.4 million syn-

chrophasor measurements collected over 15 minutes from the

Smart Grid Test Bed at the United States Military Academy. 3-

phase data was derived from the 1-phase dataset by tripling the

set of signal IDs for the voltage, current magnitude, and phase

angle differential for each PMU. Thus, there are 5 unique

signal IDs (hashes) for each PMU for the 1-phase dataset, and

11 unique signal IDs for each PMU for the 3-phase dataset.

VI. RESULTS

We benchmark our approach using three rounds of experi-

mentation. In the first round of experiments, we compare the

raw performance of the Raspberry Pi to the COTS system

for detecting constraint and temporal anomalies using our

approach. In the second round of experiments, we measure

performance when a single Pi is fed data from multiple PMUs.

Lastly, we simulate between 10 . . . 50 PMUs and explore how

well a single Pi can analyze data.

A. Single PMU Experiments

In our first set of experiments, we determine the average

amount of time needed to detect constraint and temporal

anomalies on the COTS system and on a Raspberry Pi. In this

scenario, we assume that either device is collecting data from

a single PMU with a reporting rate of 60 Hz. The current

PMU reporting rates for a 60 Hz power system are 10 Hz,

12 Hz, 15 Hz, 20 Hz, 30 Hz and 60 Hz according to the IEEE

standard [6]. In our experiments a reporting rate of 60 Hz

was used. Thus, to achieve real-time performance, we must be
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able to analyze data frame for anomalies in under 16.67 ms.

More time would be permitted for the other standard reporting

rates. We first consider the average amount of time required

to detect a single constraint and temporal anomaly. Table I

shows our results. Each element in the cell is the average run

time (in μs) required to detect a particular type of anomaly for

both 1-phase and 3-phase data. Predictably, the COTS system

is an order of magnitude faster than the Raspberry Pi. For

example, while it takes on average 0.14 μs for the workstation

to detect constraint anomalies, the Raspberry Pi requires 1.87
μs. Temporal anomalies take the longest to detect. For the 3-

phase dataset, the COTS system and the Raspberry Pi require

0.44 and 5.36 μs on average to detect temporal anomalies.

Next, we consider the average total time required to detect

constraint and temporal anomalies in a single data frame

extracted from a packet transmitted from the PMU. Constraint

anomalies can be detected at line speed, and are detected in

step 1 of our described anomaly detection approach. Temporal

anomaly detection is a two step process, whose total time

is equal to the sum of the amount of time needed to add

measurements to the queue (step 1) and examine the queues

for temporal anomalies (step 2). Table II show the total time

required to inspect a single packet of data for anomalies.

Again, the COTS system is an order of magnitude faster than

the Raspberry Pi.

While the Raspberry Pi is slower than the COTS system, our

results show that the Raspberry Pi is able to detect anomalies

in a packet of information in approximately 70.5 μs on our

single phase dataset, and 159.6 μs for 3-phase dataset. This

matches the criteria for real-time performance, as a new packet

of data only arrives every 16.67 ms. These results suggest the

viability of using Pis for synchrophasor anomaly detection.

B. Multiple PMU Experiments

One argument against our proposed architecture is perhaps

expense. While associating Raspberry Pis rather than COTS

systems per PMU is clearly more economical, the use of Pis
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in larger grids with thousands of PMUs can quickly become

expensive. Since anomaly detection on one PMU’s worth of

data is so fast, we decide to explore if a single Pi can analyze

data from multiple PMUs in our testbed.

To ascertain the Pi’s ability to handle data from p PMUs,

we interleave their measurement data. Thus, during step 1 of

our algorithm we read the equivalent of p packets of data,

reflecting the amount sent to the Pi every 16.67 ms from p
PMUS. The rest of our approach does not change. For brevity,

we show only the total time required to detect anomalies for

p PMUs. In these set of experiments, we achieve real-time

performance if p packets are analyzed in under 16.67 ms.

Figure 4 show the total anomaly detection time for our 1-

phase and 3-phase datasets as we add additional PMUs worth

of data. The x-axis represents the total number of combined

PMUs worth of data processed by a Pi. The y-axis (in log

scale) represents the amount of time (in μs) the Pi needs to

detect all temporal anomalies on a particular number of cores.

The average time required for anomaly detection on our

one-phase dataset varies between 142 μs and 566 μs. The

larger 3-phase dataset requires more time. At 6 PMUs, our

detection times start exceeding 1 millisecond. The average

time to process 7 and 8 PMUs worth of data is 1.14 and

1.32 ms respectively. This is still well under the 16.67 ms

maximum required for real time analysis. Our results show

that a single Raspberry Pi is sufficient for detecting anomalies

from the 8 PMUs in our testbed.

Lastly, we scale the number of PMUs in our 1-phase and 3-

phase dataset to range between 10 . . . 50 PMUs in increments

of 10. We accomplish this by splitting each PMU’s set of

measurements in the 1-phase and 3-phase datasets into smaller

subsets, and assigning those to new signal IDs. Thus, in the

resulting scaled datasets, the total number of measurements

remains constant. However, the total number of PMUs (and

unique signal IDs) across those sets of measurements are

increased.
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Figure 5 show the results of these scaled experiments. For

these larger numbers of PMUs, our detection times vary from

0.71 and 7.18 ms. Once again, the 3-phase dataset requires

more time for anomaly detection. For example, for 50 pmus,

we require on average 3.17 ms vs 7.18 ms to detect anomalies

on our 1-phase vs 3-phase datasets respectively. Even with 50
pmus, we are still faster than the 16.67 ms threshold required

for real-time analysis. These results suggest that the processing

power of a single Raspberry Pi is sufficient to analyze the data

from 50 PMUs in real-time.

Our experiments suggest that single board computers like

the Raspberry Pi offer an inexpensive way to perform real-

time anomaly detection in power grids. Even when scaling

our datasets to 50 PMUs, we are still fast enough to achieve

real-time performance.

VII. CONCLUSIONS

In this paper, we propose the use of inexpensive single

board computers (or SBCs) to perform anomaly detection in

the smart grid. Using SBCs to analyze synchrophasor measure-

ments close to PMUs minimizes the amount of data flowing in

the network, reducing energy consumption. Furthermore, using

SBCs support the notion of energy proportional computing.

To test our hypothesis that SBCs could sufficiently perform

anomaly detection, we simulated a data stream consisting of

1.4 million real synchrophasor measurement from a 1000 : 1
scale emulated power grid. We compare the rate of anomaly

detection using a commercial of the shelf (COTS) system and

a Raspberry Pi.

While the COTS system was faster, the Raspberry Pi was

still able detect anomalies at a rate needed for maintaining

real-time. Additionally, we show that we can analyze data

from multiple PMUs and still maintain real time performance.

Our results strongly support the use inexpensive SBCs for

localized, distributed anomaly detection in the smart grid. We

believe our results will be of great interest to grid engineers

looking for novel techniques for reducing the power consump-

tion and latency of their anomaly detection workflows.

In the future, we plan to fully integrate Raspberry Pis

into the USMA test bed to further investigate our proposed

decentralized architecture, and explore the use of libraries

and languages such as FastFlow [16] and Go [17]. Since the

performance of our anomaly detection procedure falls well

within the time requirements for real-time, we also plan to

explore more complex forms of detection and analysis, such

as the use of Discrete Fourier Transform (DFT). We anticipate

that with more complex analyses, we can begin to leverage

threading to utilize the multiple cores of the Raspberry Pi. In

our current implementation, while parallelism does offer some

improvements, experimentation has shown that the extremely

fast run times made the overall benefits negligible.

Lastly, we note that as SBC technology improves, so will the

processing capabilities, power efficiency and form factor. For

example, the recently announced Raspberry Pi Zero W [18]

features a 1 Ghz processor, 512 MB of RAM, and costs

$10.00. As the ecosystem of SBCs continues to evolve, we

plan to explore the utility of other SBCs for smart grid

analysis, including the use for anomaly detection and other

applications such as smart meters.
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