
Portable Parallel Computing with the Raspberry Pi
Suzanne J. Matthews∗

Dept. of Electrical Engineering & Computer Science
suzanne.matthews@usma.edu

Joel C. Adams
Dept. of Computer Science

adams@calvin.edu

Richard A. Brown
Dept. of Mathematics, Statistics, & Computer Science

rab@stolaf.edu

Elizabeth Shoop
Dept. of Mathematics, Statistics, & Computer Science

shoop@macalester.edu

ABSTRACT
With the requirement that parallel & distributed computing (PDC)
topics be covered in the core computer science curriculum, edu-
cators are exploring new ways to engage students in this area of
computing. In this paper, we discuss the use of the Raspberry Pi
single-board computer (SBC) to provide students with hands-on
multicore learning experiences. We discuss how the authors use
the Raspberry Pi to teach parallel computing, and present assess-
ment results that indicate such devices are effective at achieving
CS2013 PDC learning outcomes, as well as motivating further study
of parallelism. We believe our results are of significant interest to
CS educators looking to integrate parallelism in their classrooms,
and support the use of other SBCs for teaching parallel computing.

CCS CONCEPTS
• Computing methodologies→ Parallel computing method-
ologies; • Applied computing → Education;

KEYWORDS
Parallel Computing, Raspberry Pi, Education

ACM Reference Format:
Suzanne J. Matthews, Joel C. Adams, Richard A. Brown, and Elizabeth
Shoop. 2018. Portable Parallel Computing with the Raspberry Pi. In SIGCSE
’18: The 49th ACM Technical Symposium on Computer Science Education,
Feb. 21–24, 2018, Baltimore, MD, USA. ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/3159450.3159558

1 INTRODUCTION

Prior to 2006, parallel & distributed computing (PDC) topics
were rarely covered in the computer science (CS) curriculum, let
alone at the undergraduate level. The expense of parallel hardware
(among other reasons) made PDC challenging to teach. This has
largely changed over the last decade, due to the advent of multicore
and manycore (GPU) architectures and the emergence of cloud
computing. These innovations have greatly decreased the cost and
increased the access to parallel architectures.

∗Corresponding Author

ACMacknowledges that this contributionwas authored or co-authored by an employee,
contractor, or affiliate of the United States government. As such, the United States
government retains a nonexclusive, royalty-free right to publish or reproduce this
article, or to allow others to do so, for government purposes only.
SIGCSE ’18, Feb. 21–24, 2018, Baltimore, MD, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5103-4/18/02. . . $15.00
https://doi.org/10.1145/3159450.3159558

Given the ubiquity of these technologies, the ACM/IEEE CS 2013
Curriculum Recommendations [16] moved PDC topics into the core
CS curriculum. Unsurprisingly, many of the PDC core curriculum
recommendations are focused on topics and concepts specific to
shared memory (as opposed to distributed memory) parallel sys-
tems. This is due to the fact that all modern phones, tablets, laptops,
and desktop systems contain multicore CPUs, making them shared
memory parallel multiprocessors. It follows that students who cre-
ate software need to be educated in the concepts and techniques
required to write efficient software for multicore systems. CS 2013
thus requires every CS major to learn about PDC.

This raises many questions, including:

What hardware platforms should we use to teach stu-
dents about parallelism (esp. shared memory)?

In this paper, we argue that inexpensive single-board computers
(SBCs) such as the Raspberry Pi provide a new option for teaching
parallel computing. While we focus on the Raspberry Pi in this
paper, we believe the same argument applies to other affordable
SBCs. The advantages single board computers provide for teaching
students about parallel computing include:

Standardization. Pre-configured disk images may be freely down-
loaded from the Internet (e.g., [7]), ensuring a uniform work envi-
ronment for each student with the same operating system, compil-
ers, debuggers, integrated development environments (IDEs), and
other software development tools. Images can be pre-loaded with
pedagogical code examples and instructions.

Ease of setup and maintenance. To start programming, it suffices
for students to insert a pre-configured microSD card into their SBC
and boot the system. If the disk image gets corrupted, students can
simply download a new image and start over. For busy faculty who
are new to parallelism and are trying to quickly inject concepts
into a course, this ease of setup cannot be overstated.

Affordability. Compared to other parallel platforms, SBCs like
the Raspberry Pi are very inexpensive. Some cost less than a typ-
ical textbook, potentially allowing each student to purchase her
own device. Students can connect their SBCs to university-owned
(or previously purchased) peripherals such as monitors, mice and
keyboards. To minimimze costs further, students can purchase pre-
loaded microSD cards and boot a university-owned SBC.

Immediacy. On a typical SBC, the CPU, memory unit, storage
device, and other components are clearly visible, making them
readily available for visual and tactile learners. Since their software
is running on actual hardware, students can perform timing and
scalability studies without fearing resource contention with other
students or performance penalties from virtualization.

Paper Session: Systems Courses SIGCSE’18, February 21-24, 2018, Baltimore, MD, USA

92

https://doi.org/10.1145/3159450.3159558
https://doi.org/10.1145/3159450.3159558

2 WHY NOT LAPTOPS, PHONES OR VMS?
Given the ubiquity of multicore CPUs, just about any modern
computer has hardware to teach students about parallel computing.
However several platforms have drawbacks, including:

Mobile devices (i.e., smartphones and tablets) have small screens,
limited ports, and lack IDEs, making them poor platforms for writ-
ing software.

Student laptops offer larger screens, better ports, and IDEs for
writing software, compared to mobile devices. However:

• Students may have different operating systems (e.g., Chrome,
Linux, MacOS, Windows) on their laptops. This diversity can
make it a challenge for instructors to create instructional
materials that work for all students.

• Most laptop operating systems do not come with compilers,
debuggers, IDEs, and other software development tools pre-
installed. Instead, the student must install and configure
these tools, creating a potential barrier to student learning.

• A laptop’s expense is often correlated with its number of
cores. A course in which students are expected to develop
parallel software on their own laptops may thus discriminate
against students from disadvantaged backgrounds, who may
not be able to afford laptops with four or more cores. This in
turn limits the amount of parallelism that can be observed
on their system.

Virtual machines (VMs) running on laptops, desktops, or re-
mote servers can be pre-configured in a way that eliminates many
of the downsides of student laptops. However in our experience,
running parallel software on a VM (especially free ones) incurs a
non-trivial performance penalty.

Remote multicore servers can eliminate the preceding draw-
backs. However, using remote hardware for parallel computing:

• Requires account management for students in courses, ex-
tending instructor or department overhead.

• Requires a mechanism to prevent student programs from in-
terfering with one another. To accomplish this, students may
need to use a reservation system, or submit their programs
via a batch queuing system.

• Requires students to view the computer as an abstract entity.
For students with particular learning styles (e.g., who learn
best by seeing and/or by tactile manipulation), a local system
they can touch and whose operation they can observe would
be preferable.

In short, SBCs eliminate the drawbacks associated with mobile
devices, student laptops, virtual machines, and remote servers, mak-
ing them a viable platform for parallel computing education. They
are also fun devices that many students find highly motivating.

3 BACKGROUND AND RELATEDWORK
Perhaps the most well-known SBC is the Raspberry Pi, a $35.00
credit-card sized computer. The Raspberry Pi Model 3 features a
1.2 GHz quad-core ARM processor and 1 GB of RAM. Its low cost
and small form factor inspires hobbyists to use the Raspberry Pi
for various projects, including robots, drones and webservers.

Rasbian, the Raspberry Pi operating system, comes pre-configured
with Scratch and Python. A goal of the Raspberry Pi project is to
provide an inexpensive, accessible platform that enables children

and teachers to learn computing. Notable early efforts include the
Glyndŵr/BCS Turing Project [8], and the Bridge21 CPD effort [4].
Both projects aimed to expose high school students and teachers to
computing concepts using the Raspberry Pi (the former used the Pi
in conjunction with other devices). In both studies, the hands-on
approach was well received, with educators in the Bridge21 CPD
effort keen to incorporate the Raspberry Pi into their courses [4].

Educators at the Universities of Guelph [19] and Calgary [9, 10]
were among the first to use the Raspberry Pi to teach programming
topics in a college setting. Guelph students used the Raspberry
Pi to learn beginning C programming, while second-year Calgary
students used it to learn embedded programming (ARM assembly).
At both universities, a dedicated Raspberry Pi lab was created for
students to plug in their devices. At Guelph, students bought a
custom Raspberry Pi “kit" as part of their standard lab equipment in
the course [19]. Calgary students, however, were required to come
to the Raspberry Pi lab in order to use their devices. While the
Guelph students were markedly enthusiastic for the Pis, the reac-
tion of the Calgary students was more neutral [9] – students were
enthusiastic about working with the Pis, but they were frustrated
by the “awkwardness” of the lab set up and scarcity of the shared
resources [9]. This suggests the “one SBC per student” approach is
preferable for CS education. We also note that Raspberry Pis were
used to teach assembly at East Tennessee State University [15],
though no assessment data was provided.

Early SBCs (including the earlier Raspberry Pis) had one core,
so a single SBC did not lend itself well to teaching parallel comput-
ing. Instead, researchers and educators started networking SBCs
together to form “microclusters”, in which communication between
the SBC nodes was enabled through the use of the Message Passing
Interface (MPI). IridisPi [5] is an early example using Raspberry Pis.
Pfalzgraf and Driscoll proposed using single-core Raspberry Pis in
conjunction with MPI to teach about HPC concepts [13]. Toth used
dual-core Cubie board SBCs to enable each student to have their
own 2-node Beowulf cluster [18] in a parallel computing course.

However, modern SBCs have multiple cores and may include
access to co-processor or GPU chips. This enables the teaching of
shared memory parallelism on SBCs for the first time (see [12] for
an example). In this paper, we discuss efforts to use the Raspberry
Pi to teach multicore computing. To the best of our knowledge, we
are the first to suggest the use of the Raspberry Pi for this purpose.
In the sections that follow, we discuss strategies and materials we
have used to teach shared memory programming to students at our
respective universities and integrate these concepts into our curric-
ula. Motivated by the literature, we present workshop assessment
data evaluating the efficacy and enthusiasm SBCs generate when
teaching multicore computing concepts.

4 PI TEACHING PLATFORMS & ASSESSMENT

The small form factor of SBCs make them highly portable and
amenable for introducing parallel concepts at workshops, without
needing to coordinate access to remote architectures. Matthews
et al. [7] recently organized a series of workshops (described in
Section 4.2) centered on using the Raspberry Pi 3 to learn and
teach parallel computing concepts. The workshops were extremely
popular, with 15 to 30 people attending each.

Paper Session: Systems Courses SIGCSE’18, February 21-24, 2018, Baltimore, MD, USA

93

In the following subsections, we introduce available teaching
materials and present assessment results of using them in the work-
shop settings. Our goals included observing: (i) how well parallel
computing could be taught using an SBC, and (ii) whether or not
using an SBC would motivate participants to learn about parallel
computing. In the assessments that follow, we focus on the Rasp-
berry Pi 3. However, we stress that almost any SBC offers the same
advantages listed in Section 1 – affordability, low power consump-
tion, ease of setup/maintenance, and immediacy. We hypothesize
that showing the effectiveness of one SBC for teaching parallelism
indicates the effectiveness of others for teaching PDC.

4.1 Available PDC Teaching Modules
We have developed teaching modules, available at csinparallel.org,
that are designed to be used in a variety of courses in a day or two,
enabling instructors to include PDC topics in existing courses. The
csinparallel.org patternlet modules are especially useful for teach-
ing concepts to students in first and second-year undergraduate
courses [2].

Patternlets [1] are small code examples that use established par-
allel design patterns to demonstrate particular PDC topics. There
are currently 17 OpenMP patternlets for teaching shared memory
parallel topics, as well as a number of patternlets for POSIX multi-
threading, MPI, and heterogeneous (MPI+OpenMP) computing.

#include <stdio.h>
#include <omp.h>
int main(int argc, char** argv) {

printf("\nBefore...\n");
// #pragma omp parallel

printf("\nDuring...");
printf("\n\nAfter...\n\n");
return 0;

}

Figure 1: Sample OpenMP fork-join patternlet.

The patternlet examples can be used to achieve several of the
CS2013 PD outcomes by enabling students to explore a concept
using a simple program (typically one screen of code or less) that,
when changed slightly, illustrates the desired learning outcome.
Figure 1 shows an OpenMP patternlet that illustrates the fork-join
pattern. Students explore this pattern by first running the program
shown in Figure 1, observing the results, then uncommenting the
pragma and re-running the program to observe changes in output.

The teaching modules accompanying each patternlet use di-
agrams to further illustrate concepts and provide questions for
students to consider while trying out examples [6].

There are additional teaching materials at csinparallel.org that
can be used in the classroom with the Raspberry Pi. Table 1 de-
picts the PD Core Tier 1/2 topic areas and learning outcomes from
ACM 2013 that can be taught with Raspberry Pi SBCs. Our previous
work [3] assessed several of these modules and showed that they
met learning objectives similar to those in Table 1 in the Parallel
Decomposition, Communication and Coordination, and Parallel Al-
gorithms, Analysis and Programming areas. For example, a module

Table 1: PD Core Topic Areas [16] Teachable on the Pi.

PD Knowledge Area Outcomes
Parallel 1. Shared resource access
Fundamentals 2. Types of synchronization
Parallel 1. Explain need for synchronization
Decomposition 2. Identify parallelism opportunities

3. Write correct scalable PD program
4. Use tasked-based decomposition
5. Use data decomposition

Communication 1. Use mutual exclusion
& Coordination 2. Give an example of data race

5. Write concurrent task program
6. Use synchronized task queue
7. Explain need for atomicity
8. Write a program that reveals a data race

Parallel 3. Define speedup and scalability
Algorithms, 4. Identify independent tasks
Analysis, 5. Describe what can(not) be parallelized
and Programming 6. Implement parallel divide and conquer
Parallel 1. Explain shared vs. distributed memory
Architecture 2. Describe SMP architecture

3. Describe tasks that match SIMD

on multicore programming with OpenMP enables students to use
data decomposition, and to observe and fix a race condition on a
shared variable.

4.2 Raspberry Pi Workshops
The authors led parallel computing workshops at the 2016 ACM
Richard Tapia Conference, the 2017 SIAM Computational Science
& Engineering (CSE) Broader Engagement program, and the 2017
ACM SIGCSE Conference. Each workshop lasted about 90 minutes,
and used the quad-core Raspberry Pi 3 to introduce the participants
to OpenMP programming. Each workshop followed roughly the
same format, though were presented to radically different audi-
ences. The workshops at Tapia and CSE were attended primarily by
students, while the workshop at SIGCSE was attended by faculty.

Figure 2: Views of the Pimoroni unit used in workshops.

4.2.1 Workshop Overview. Each pair of participants shared a
“Pimoroni" [11] unit: a Raspberry Pi 3 mounted to a Pimoroni 7" dis-
play, plus a USB keyboard and mouse (see Figure 2). Each unit cost
approximately $150.00. Since the quality of wireless at the work-
shops was unknown beforehand, paper handouts were prepared
for each participant, including a “Raspberry Pi Basics" handout,
adapted from the CSinParallel OpenMP patternlets module. We
publicly share our workshop materials at this link [7].

Paper Session: Systems Courses SIGCSE’18, February 21-24, 2018, Baltimore, MD, USA

94

Table 2: Results of Pre-Survey and Post-Survey of OpenMP workshops.

Pre-Survey Post-Survey p-values
T C S T C S

Questions/ Number of Responses 33 16 17 32 16 17
1. How confident are you that you can describe how
to decompose a problem using multiple threads and
implement it using a parallel loop?

2.15 2.38 2.88 3.66 4.18 4.06 T: 3.129 × 10−8
C: 1.653 × 10−4
S: 4.556 × 10−3

2. How confident are you that you could describe
the advantages and disadvantages of using parallel
programming on shared memory multicore ma-
chines to someone familiar with programming?

2.55 3.06 3.17 3.94 4.38 4.18 T: 1.071 × 10−6
C: 6.742 × 10−4
S: 2.753 × 10−2

3. How confident are you that you can define
speedup and describe it to someone familiar with
programming?

2.27 2.81 3.12 4.03 4.5 4.23 T: 5.912 × 10−7
C: 1.965 × 10−4
S: 2.081 × 10−2

4. How confident are you that you can describe
what a race condition is and how to avoid it when
writing parallel programs that use shared memory?

2.48 2.81 3.12 3.83 4.5 4.17 T: 2.349 × 10−5
C: 6.933 × 10−4
S: 7.663 × 10−3

5. To what extent did using an inexpensive multi-
core computer (e.g. the Raspberry Pi) to run parallel
programsmotivate you to learn more about parallel
computing in the future?

n/a n/a n/a 4.22 4.13 3.88 n/a

Eachworkshop beganwith a short presentation on the Raspberry
Pi 3, multicore architectures, and shared memory parallelism. We
discussed the differences between processes and threads, and how
threads can be executed concurrently or in parallel. The participants
spent the next 50 minutes working in pairs, interactively complet-
ing the OpenMP exercises in the “Raspberry Pi Basics" handout. In
the final 20 minutes of the workshop, the participants used the Pi to
run a drug-design CSinParallel module and complete an accompa-
nying worksheet. This module contains three versions of a program
simulating the design of pharmaceutical drugs: two using OpenMP
(with different thread-scheduling options) and one using C++11
threads. Students ran all three programs, varying the numbers of
cores, measured the run times, and calculated speedup. Students
were then asked to think about why the three programs ran differ-
ently. In the last few minutes of the workshop, we discussed the
results, and why the programs behaved differently.

Each workshop had between 15 and 30 participants. While the
workshop was designed with computer science undergraduates
with no prior exposure to parallelism in mind, we had very diverse
audiences. Some attendees were indeed undergraduates who had
never been exposed to parallel computing. Others were graduates
students with some prior parallel programming experience. Still
others were faculty members seeking ideas on how to teach paral-
lelism at their own institutions.

Prior to each workshop, we gave a 4-question pre-survey, asking
the participants to rate their confidence on each of four learning
objectives, using a scale of 1 to 5 with “1" indicating “not confident
at all", “3” indicating “somewhat confident”, and “5" indicating “very
confident”. The survey questions are listed in Table 2.

A post-survey was administered at the conclusion of the work-
shop that was identical to the pre-survey, except for a fifth question
that asked participants to assess (on a scale of 1 to 5) the effect of the
Raspberry Pi (or a device like it) in motivating them to learn more
about parallel computing. Here, “1” indicated “no increase”, “3” in-
dicated “some increase”, while “5” indicated “a lot of increase”. This

question was followed with an invitation to explain their answer
further through an open-ended response.

4.2.2 Results of Assessment. Table 2 shows the results of our
surveys. The third row reports the number of responses we received
on the pre- and post-surveys for the Tapia (T), SIAM CSE (C), and
SIGCSE (S) workshops. (For example, 33 Tapia participants com-
pleted the pre-survey, while 32 completed the post-survey.) The
mean response for each pre- and post-survey question is shown in
columns two and three respectively. We conducted a two-sample
unpaired t-test using the R statistics package [17] to test the signif-
icance of the difference between the mean scores.

For each question, the null hypothesis of the t-test is that the
means for the two groups are equivalent, and we reject the null
hypothesis when p < 0.05. The last column of Table 2 shows the
results of our t-test analyses.

There is a significant difference in the means of the pre- and
post-surveys for questions 1 through 4 for each of our workshops,
despite the fact that each had different mixtures of faculty and
students. The Tapia workshop (which had our lowest p-value) had
the highest number of novice students; the CSE workshop had more
experienced students; and the SIGCSE workshop was made up of
almost entirely faculty. Unsurprisingly, more advanced groups had
higher p-values than the novice group; however, all measured p-
values are below 0.05. This strongly suggests that our approach can
be used to cover many of the PDC learning outcomes of Table 1.

The fifth question in Table 2 only appeared on the post-survey.
The mean for the fifth question was 4.22 for the Tapia workshop,
4.13 for CSE, and 3.88 for SIGCSE; the more students in a workshop,
the greater the positive effect. A histogram depicting the combined
set of responses to question 5 is shown in Figure 3.

The overall mean for the fifth question responses was 4.19, and
40 of the 48 total respondents answered either a “4” or “5”. This
suggests to us that the vast majority of the participants felt the

Paper Session: Systems Courses SIGCSE’18, February 21-24, 2018, Baltimore, MD, USA

95

Figure 3: Question 5 histogram of post-workshop survey.

Raspberry Pi 3 SBC was a very positive factor in motivating them
to learn more about parallel computing.

More information can be gleaned from the open-ended responses;
40 (83%) of the respondents to the post quiz provided an open-ended
response. Their feedback was largely very positive and enthusiastic.

Several participants remarked at the perceived impact of the
Raspberry Pi for learning about parallel computing. Said one re-
spondent: “The impact of it is incredible, would love to learn more."
One of our SIGCSE participants remarked, “I have experience with
parallel processing/programming, but not so much pis. That’s why
I took the workshop. I love using the pis! Wonderfully motivating!
Gets students closer to the hardware and powerful enough to motivate
studying parallelism. Great workshop!"

Still other participants noted how effectively the Raspberry Pi
could be used to teach OpenMP. “Awesome seeing how easy this was
to teach", said one of our Tapia participants. “You can get right to
the point quickly", said another. One of our SIGCSE participants
remarked, “I am impressed with how fast and easy it was to demon-
strate this[sic] concepts. This is something I can easily see doing with
students. The ease of the examples and the simplicity of the OpenMP
inspires me to do this in class!!”

Perhaps the biggest impact of our workshop was the fact that
attendees could explore parallel computing on an inexpensive, per-
sonal device. “Not having to have an expensive computer to try this
stuff on is really motivating", noted one Tapia participant. “Accessibil-
ity Helps!" wrote another. “I’ll probably try to get my own Raspberry
Pi to practice more and write my own code for it" remarked one of
our CSE attendees. “Simple system and inexpensive" stated a SIGCSE
participant.

The newness of the Raspberry Pi added an extra dimension of
novelty and relevancy to the material for others. “It’s fun to see it
work on a small machine and get to play with the tech I keep hear-
ing about (raspberry pi)", said a Tapia attendee. “Amazing parallel
processing system with multicore processor!" remarked a SIGCSE par-
ticipant. The perceived value was succinctly stated by another Tapia
participant: “Simple, cheap, not too intimidating! Very awesome =)".

We acknowledge the concepts taught on the Raspberry Pi can
be taught on a workstation or supercomputer node. “I think it’s
easier on a workstation", grumbled one SIGCSE participant, perhaps
due to the Pimoroni’s small screen. However, the portability and
inexpensiveness of the Raspberry Pi makes it possible to teach
parallel computing concepts while maintaining the transferability

of knowledge to larger systems. “It can help run lab experiments that
can later be implemented at a larger scale" observed one attendee.
Another noted that “The somewhat limited resources on the Pi (as
compared to KVL or something) really makes you focus on efficiency
and proper programming”.

The true value of the Pi is having a personal machine that is
relateable and inexpensive. “I am already very motivated because I
plan to teach the course ...” said a SIGCSE participant, “but my expec-
tation is using an inexpensive system will motivate the STUDENTS to
do so and I am really interested in how much that is true”.

4.2.3 Lessons Learned. Teaching OpenMP concepts with the
Raspberry Pi in a workshop setting was clearly effective. Further-
more, within a 90-minute period, we were able to touch upon sev-
eral outcomes listed in the PD knowledge area, including outcomes
1 and 2 under parallel fundamentals; outcomes 1,2, and 4 under
parallel decomposition, outcomes 1 and 2 under communication
& coordination; outcome 3 under parallel algorithms, analysis, &
programming; and outcome 2 under parallel architecture.

The feedback we received from the workshop indicates that peo-
ple enjoyed using the Raspberry Pi to learn parallel programming.
Put differently, our workshop participants found the use of SBCs
to be highly motivating, and we believe that students will find the
study of PDC using SBCs in the classroom equally motivating.

After the workshops, we held a series of “debriefing” sessions.
During these sessions, several of us reflected on how much easier it
was (logistically) to conduct this workshop using SBCs, compared
to previous workshops in which we used remote HPC systems. In
several prior workshops, automated security systems, poor wireless
connectivity, electrical storms, misconfigured accounts, and other
remote system issues caused problems. Such issues caused a great
deal of stress, since we could not fix the systems ourselves. As a
result, we always needed to have a “Plan B” system in place for our
workshops, just in case something went wrong.

To prepare for our workshop using SBCs, we simply flashed all
the devices’ disks prior to the workshop, and then re-flashed them
with fresh images afterwards. All the units fit into a single pelican
case that was mailed to the workshop location prior to the event,
and returned afterwards. For the SIGCSE workshop, we were able
to check the Pis in their pelican case as a separate piece of luggage.

4.3 Alternative Teaching Platforms
The Pimoroni-based setup for teaching PDC material using Rasp-
berry Pis has proven to be portable and effective, as demonstrated in
the workshop experiences described above. This section describes
an alternative setup that costs $50.00 and enables students to in-
teract directly with the Pi’s desktop environment via a network
connection from a laptop or lab workstation. The system image [7]
works as-is on the Pimoroni, or through the configuration described
below, and contains the PDC materials used in our workshops.

Each kit (shown in Figure 4) consists of a Raspberry Pi, a Micro-
USB card with the system image installed, cables, and a USB-to-
Ethernet adapter (for laptops lacking an Ethernet port). The image
enables students running Windows, OS X, or Linux to access the Pi
desktop environment using open-source virtual network computing
(VNC) [14] software. Students connect to the Pi using a direct wired

Paper Session: Systems Courses SIGCSE’18, February 21-24, 2018, Baltimore, MD, USA

96

Figure 4: Laptop connection kit.

Ethernet connection between their laptops and the Pi, or through
the use of a USB-to-Ethernet adapter.

The right side of Figure 4 depicts a VNC client displaying the
Raspberry Pi desktop for user interaction. Users can also interact
with their Pi on a command line via SSH (the VNC client requires
an underlying SSH session). With printed or video instructions,
we found that first-time users can assemble the system and begin
computing in 10-15 minutes, even with no prior Raspberry Pi ex-
perience (except when hardware issues arise; e.g., a faulty USB
socket). After the first time, setup and tear-down time totals about
five minutes, making this approach feasible for in-class exercises.

5 CONCLUSIONS AND FUTUREWORK
In this paper, we describe how single board computers like the
Raspberry Pi can be effectively used to introduce undergraduate
students to parallel computing in a workshop setting. SBCs embody
the “hands-on experiential” learning advocated by CS educators,
and are a fun way to introduce students to parallel computing.

SBCs can also be networked together to create “microclusters”
to introduce students to distributed and heterogeneous computing.
For example, our current system image supports building Beowulf
clusters through the use of a switch; we plan to extend this image
to enable Pis to self-assemble into a cluster.

We have also discussed strategies for teaching parallel computing
with the Raspberry Pi. In particular, the Raspberry Pi costs less than
many course textbooks. With the availability of free, high-quality
teaching materials, Raspberry Pis can be individually purchased
by students like a textbook. This makes the Pi useful in a variety
of different contexts, including required courses, elective courses,
undergraduate research, and outreach experiences.

Our collective experiences strongly suggest that the Raspberry Pi
is an inexpensive, accessible, cost-effective, and highly motivating
way to introduce undergraduate students to parallel and distributed
computing. We hope that our experiences will inspire others to
explore the use of the Raspberry Pi and other SBCs to engage their
students and help them achieve PDC learning outcomes.

As the price/performance ratios of system on a chip (SoC) archi-
tectures continue to improve, we will continue to see SBCs with
updated processors. For example, the ODROID XU4 offers an octa-
core processor for $59.00. We look forward to future work that
explores the use of such systems to increase student engagement
through teaching, research, and outreach activities.

ACKNOWLEDGMENTS
We are grateful to the anonymous reviewers for their feedback on
this work. Funding for this project was partially provided by the
National Science Foundation (NSF) and the DOD High Performance
Computing Modernization Program (HPCMP). Adams, Brown, and
Shoop are funded under NSF DUE Grants 1225739/1225796/1226172.
Matthews is funded under HPCMP MIPRs 61550445/62464243. The
opinions expressed in this work are solely of the authors and do
not necessarily reflect those of the U.S. Military Academy, the U.S.
Army, or the Department of Defense.

REFERENCES
[1] Joel C. Adams. 2014. Injecting Parallel Computing into CS2. In Proceedings of

the 45th ACM Technical Symposium on Computer Science Education (SIGCSE ’14).
ACM, New York, NY, USA, 277–282. https://doi.org/10.1145/2538862.2538883

[2] Joel C. Adams. 2015. Patternlets: A Teaching Tool for Introducing Students to
Parallel Design Patterns. In Proceedings of the 2015 IEEE International Parallel
and Distributed Processing Symposium Workshop (IPDPSW ’15). 752–759. https:
//doi.org/10.1109/IPDPSW.2015.18

[3] Richard Brown and Elizabeth Shoop. 2011. Modules in community: injecting
more parallelism into computer science curricula (SIGCSE ’11). ACM, New York,
NY, USA, 447–452. https://doi.org/10.1145/1953163.1953293

[4] J. R. Byrne, L. Fisher, and B. Tangney. 2015. Computer science teacher reactions
towards raspberry Pi Continuing Professional Development (CPD) workshops
using the Bridge21 model. In 2015 10th International Conference on Computer
Science Education (ICCSE). 267–272. https://doi.org/10.1109/ICCSE.2015.7250254

[5] Simon J. Cox, James T. Cox, Richard P. Boardman, Steven J. Johnston, Mark
Scott, and Neil S. O’Brien. 2014. Iridis-pi: a low-cost, compact demonstration
cluster. Cluster Computing 17, 2 (01 Jun 2014), 349–358. https://doi.org/10.1007/
s10586-013-0282-7

[6] CSinParallel. 2013. Patternlets in Parallel Programming. (2013). https://
csinparallel.org/csinparallel/modules/patternlets.html

[7] CSinParallel. 2017. Raspberry Pi Workshop Materials. (2017). https://csinparallel.
org/csinparallel/raspberry_pi.html

[8] Vic Grout and Nigel Houlden. 2014. Taking Computer Science and Programming
into Schools: The Glyndŵr/BCS Turing Project. Procedia - Social and Behavioral
Sciences 141, Supplement C (2014), 680 – 685. https://doi.org/10.1016/j.sbspro.2014.
05.119 4th World Conference on Learning Teaching and Educational Leadership
(WCLTA-2013).

[9] Jalal Kawash, Andrew Kuipers, Leonard Manzara, and Robert Collier. 2016. Un-
dergraduate Assembly Language Instruction Sweetened with the Raspberry Pi.
In Proceedings of the 47th ACM Technical Symposium on Computing Science Edu-
cation (SIGCSE ’16). ACM, New York, NY, USA, 498–503. https://doi.org/10.1145/
2839509.2844552

[10] M Lowey. 2013. Raspberry pi sweetens learning for computer sci-
ence students. (2013). https://www.ucalgary.ca/utoday/issue/2013-11-13/
raspberry-pi-sweetens-learning-computer-science-students

[11] Pimoroni Ltd. 2015. Raspberry Pi 7" Touchscreen Display with Stand. (2015).
https://shop.pimoroni.com/

[12] Suzanne J. Matthews. 2016. Teaching with Parallella: A First Look in an Under-
graduate Parallel Computing Course. J. Comput. Sci. Coll. 31, 3 (Jan. 2016), 18–27.
http://dl.acm.org/citation.cfm?id=2835377.2835381

[13] A. M. Pfalzgraf and J. A. Driscoll. 2014. A low-cost computer cluster for high-
performance computing education. In IEEE International Conference on Electro/In-
formation Technology. 362–366. https://doi.org/10.1109/EIT.2014.6871791

[14] T. Richardson, Q. Stafford-Fraser, K. R. Wood, and A. Hopper. 1998. Virtual
network computing. IEEE Internet Computing 2, 1 (Jan 1998), 33–38. https:
//doi.org/10.1109/4236.656066

[15] David Tarnoff. 2015. Integrating the Arm-based Raspberry Pi into an Architecture
Course. J. Comput. Sci. Coll. 30, 5 (May 2015), 67–73. http://dl.acm.org/citation.
cfm?id=2752981.2752998

[16] TheACM/IEEE Joint Task Force on Computing Curricula. 2013. Computer Science
Curricula 2013: Curriculum Guidelines for Undergraduate Degree Programs in
Computer Science. (December 2013).

[17] The R Foundation. 2009. The R Project for Statistical Computing. Internet
Website, last accessed 09-20-16. (2009). https://www.r-project.org/.

[18] D. Toth. 2014. A Portable Cluster for Each Student. In 2014 IEEE International
Parallel Distributed Processing Symposium Workshops. 1130–1134. https://doi.org/
10.1109/IPDPSW.2014.126

[19] Michael Wirth and Judi McCuaig. 2014. Making Programs With The Raspberry
Pi. In Proceedings of the Western Canadian Conference on Computing Education
(WCCCE ’14). Article 17, 5 pages. https://doi.org/10.1145/2597959.2597970

Paper Session: Systems Courses SIGCSE’18, February 21-24, 2018, Baltimore, MD, USA

97

https://doi.org/10.1145/2538862.2538883
https://doi.org/10.1109/IPDPSW.2015.18
https://doi.org/10.1109/IPDPSW.2015.18
https://doi.org/10.1145/1953163.1953293
https://doi.org/10.1109/ICCSE.2015.7250254
https://doi.org/10.1007/s10586-013-0282-7
https://doi.org/10.1007/s10586-013-0282-7
https://csinparallel.org/csinparallel/modules/patternlets.html
https://csinparallel.org/csinparallel/modules/patternlets.html
https://csinparallel.org/csinparallel/raspberry_pi.html
https://csinparallel.org/csinparallel/raspberry_pi.html
https://doi.org/10.1016/j.sbspro.2014.05.119
https://doi.org/10.1016/j.sbspro.2014.05.119
https://doi.org/10.1145/2839509.2844552
https://doi.org/10.1145/2839509.2844552
https://www.ucalgary.ca/utoday/issue/2013-11-13/raspberry-pi-sweetens-learning-computer-science-students
https://www.ucalgary.ca/utoday/issue/2013-11-13/raspberry-pi-sweetens-learning-computer-science-students
https://shop.pimoroni.com/
http://dl.acm.org/citation.cfm?id=2835377.2835381
https://doi.org/10.1109/EIT.2014.6871791
https://doi.org/10.1109/4236.656066
https://doi.org/10.1109/4236.656066
http://dl.acm.org/citation.cfm?id=2752981.2752998
http://dl.acm.org/citation.cfm?id=2752981.2752998
https://doi.org/10.1109/IPDPSW.2014.126
https://doi.org/10.1109/IPDPSW.2014.126
https://doi.org/10.1145/2597959.2597970

	Abstract
	1 Introduction
	2 Why not Laptops, Phones or VMs?
	3 Background and Related Work
	4 Pi Teaching Platforms & Assessment
	4.1 Available PDC Teaching Modules
	4.2 Raspberry Pi Workshops
	4.3 Alternative Teaching Platforms

	5 Conclusions and Future Work
	Acknowledgments
	References

