
Energy-Efficient Analysis of Synchrophasor Data
using the NVIDIA Jetson Nano

Suzanne J. Matthews
Electrical Engineering & Computer Science

United States Military Academy
West Point, NY USA

suzanne.matthews@westpoint.edu

Aaron St. Leger
Electrical Engineering & Computer Science

United States Military Academy
West Point, NY USA

aaron.stleger@westpoint.edu

Abstract—Smart Grid Technology is an important part of
increasing resilience and reliability of power grids. Applying
Phasor Measurement Units (PMUs) to obtain synchronized pha-
sor measurements, or synchrophasors, provides more detailed,
higher fidelity data that can enhance situational awareness by
rapidly detecting anomalous conditions. However, sample rates
of PMUs are up to three orders of magnitude faster than
traditional telemetry, resulting in large datasets that require
novel computing methods to process the data quickly and
efficiently. This work aims to improve calculation speed and
energy efficiency of anomaly detection by leveraging manycore
computing on a NVIDIA Jetson Nano. This work translates
an existing PMU anomaly detection scheme into a novel GPU-
compute algorithm and compares the computational performance
and energy efficiency of the GPU approach to serial and multicore
CPU methods. The GPU algorithm was benchmarked on a real
dataset of 11.3 million measurements derived from 8 PMUs from
a 1:1000 scale emulation of a power grid, and two additional
datasets derived from the original dataset. Results show that the
GPU detection scheme is up to 51.91 times faster than the serial
method, and over 13 times faster than the multicore method.
Additionally, the GPU approach exhibits up to 92.3% run-time
energy reduction compared to serial method and 78.4% reduction
compared to the multicore approach.

Index Terms—big data applications, manycore computing,
GPGPU, single board computers, phasor measurement units,
power system analysis computing, smart grids

I. INTRODUCTION

Power grids have historically been susceptible to large-scale
blackouts resulting from cascading failures. While rare, the im-
pact of large-scale blackouts can be severe. Blackouts arise due
to numerous factors such as equipment failures, operational
errors, cyber-attacks, physical attacks on the power grid, or a
combination thereof. One blackout incident in North America,
the 2003 Northeast Blackout, occurred due to stress on the
grid infrastructure and ineffective monitoring and analysis of
the grid itself. This incident left approximately 50 million
people in the Northeastern United States and Canada without
power [1]. Subsequent analysis showed that more sophisticated
monitoring and better situational awareness would have helped
prevent this blackout [2].

Synchronized phasor measurments, or synchrophasors, are
obtained by Phasor Measurement Units (PMUs). PMU im-
plementation into Wide Area Monitoring Systems (WAMS)

DOD High Performance Computing Modernization Program

show promise in improving the situation awareness of power
grids. Phasor Measurement Units (PMUs) provide data sample
rates and measurement fidelity far greater than traditional
methods. However, a challenge of PMUs is the large data that
is produced. For example, PMUs operating at a sampling rate
of 60 HZ collect data every 16.67 ms. Efficient algorithms are
therefore required to quickly analyze synchrophasor data.

Generally, synchrophasor analysis can be classified into two
categories: real-time or near real-time to support operation of
the power grid, and offline analysis of historical PMU data
to provide further insight into power system operation. Both
categories require computational methods and algorithms that
can process large amounts of data quickly. Real-time applica-
tions process less data but have stricter timing requirements
while historical data analysis process significantly larger data
sets with less strict timing requirements.

Recent research has shown promise in applying single board
computers (SBCs) to the problem of detecting anomalies
in synchrophasor data [3]–[5], an important component of
WAMS. SBCs have several advantages over traditional com-
puting platforms, including reduced cost, lower power and
energy consumption, and smaller form factor. When deployed
in an edge computing framework, SBCs are capable of an-
alyzing data close to the PMU, resulting in lower network
requirements, energy savings, and the ability to better match
the computing hardware to the specific application at hand.

A key performance limitation of most modern SBCs lies
with the ARM-based system-on-a-chip (SoC) that is prevalent
on such systems, which make it near impossible to achieve
real-time historical analysis of sychrophasor data. This paper is
novel for two reasons. First, it presents a GPU anomaly detec-
tion scheme for historical synchrophasor analysis. Second, it
demonstrates how the 128-core NVIDIA Jetson Nano SBC can
analyze millions of synchrophasor measurements in less than
six seconds while consuming less than 10 Watts of power. Our
results highlight the enormous potential of manycore SBCs for
centralized WAMS anomaly detection applications.

The rest of the paper is organized as follows. Section II
provides background information and discussion of related
work. Section III provides an overview of the GPU algorithm.
Experimental setup and results are in Section IV and V
respectively, and concluding remarks are in Section VI.

U.S. Government work not protected by U.S. copyright

Authorized licensed use limited to: West Point Military Academy. Downloaded on May 19,2021 at 23:43:15 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: PMU based wide area monitoring system with SBC
edge computing

II. BACKGROUND & RELATED WORK

PMU implementation is guided by the IEEE C37.118 Syn-
chrophasor Standard [6] which defines the performance stan-
dards, and protocols for PMUs. PMUs are more advanced than
traditional asynchronous sensors. They are time synchronized
via the global positioning system (GPS) and provide time
stamped measurements of voltage phasors, current phasors,
frequency, and rate of change of frequency in the power grid.
Reporting rates are defined by the standard between 10-60
Hz for a 60 Hz power system [6], three orders of magnitude
faster than traditional telemetry, and provide the ability to more
rapidly detect and respond to anomalies. However, significant
communication and computing infrastructure, and computa-
tional algorithms and techniques, are required to handle the
resulting large data in a timely manner.

PMU based WAMS can provide faster and more detailed
monitoring. WAMS require networked sensors and computing
devices integrated throughout the grid (see Figure 1 for
an example). PMUs provide synchrophasors to the Phasor
Data Concentrators (PDC), which archive and serve data. For
centralized computing at the control center, all data must be
sent through the wide area communication network. As an
alternative, data is transferred across a local area network to a
computing platform to perform analysis and send the results
through the wide area network. The primary trade-off for edge
vs. centralized computing is the quantity of data to be analyzed
and the network requirements to transfer the data.

Real-time PMU data analysis supports operation of the
power grid while offline analysis of historical PMU data
provides insight into power system operation. Both categories
require computational methods and algorithms that can process
large amounts of data quickly. Real-time applications process
less data, but have strict timing requirements while historical
data analysis process larger data sets with less strict timing
requirements. The anomaly detection approach presented in
this work is based on earlier work [7] that performed constraint
and temporal analysis of historical PMU data on a standard
multicore server. For a particular type of measurand (e.g.
voltage, current, etc.) there is a window of allowed variation.
A measurement that falls outside its window of allowed
variation is classified as a constraint anomaly [7]. Rapid

Fig. 2: Architectural Layout of Jetson Nano

fluctuations that occur inside the window of allowed variation
are often indicators of anomalous behavior; these are classified
as temporal anomalies [7] and are detected using a metric
known as the Fano factor [7].

A concept of a WAMS, with single board computers for
both edge and centralized computing, is shown in Figure 1.
Compared to traditional computers, SBCs are inexpensive
and power-efficient. Prior work demonstrates the efficacy of
applying a Raspberry Pi SBC [3], [4] in an edge-computing
context for the real-time detection of constraint and temporal
anomalies. The Raspberry Pi approach resulted in real-time
speeds at significant energy savings. An SBC cluster was
explored for centralized, historical anomaly detection in [5]
and showed some promise. While cost and power consumption
compared very favorably to multicore servers, the cluster’s
data transfer and memory bottlenecks limited its usefulness.

GPU (or manycore) computing holds significant promise
for accelerating the anomaly detection process. Prior research
has shown the applicability of manycore computing for power
systems applications, such as non-linear AC Power flow
analysis in transmission systems (Newton-Raphson) [8] and
radial distribution systems (forward backward sweep) [9].
Performance of GPU compute on power flow and state es-
timation were presented in [10]–[12]. These works showed
substantial improvements by leveraging GPU compute. The
work in [13], [14] specifically highlighted the needs and mo-
tivations of High Performance Computing (HPC) to overcome
the computational challenges of WAMS, and other, power
systems applications. Applying GPU compute to AD in state
estimation [15], security assessment [16], and distribution
system optimization [17], showed improved performance.

Historically, GPU computing was not possible on most sin-
gle board computers. If an SBC had a GPU, it was integrated
into the system-on-a-chip, and was too small to perform any-
thing beyond rudimentary graphics processing. The NVIDIA
Jetson TK1, and subsequent Jetson TX1 and TX2 were the first
single board computers with CUDA-enabled cores. However,
these early SBCs had a large form-factor, and cost as much
as $599.00. In 2019, NVIDIA released the Jetson Nano, a
$99.00 SBC that is roughly the size of two credit cards with
a maximum power consumption of 10 Watts. Figure 2 depicts
the architecture of the system. The Jetson Nano features a

U.S. Government work not protected by U.S. copyright

Authorized licensed use limited to: West Point Military Academy. Downloaded on May 19,2021 at 23:43:15 UTC from IEEE Xplore. Restrictions apply.

compute capability 5.3 Maxwell GPU (the “device”) with
one shared-memory multiprocessor (SMM) consisting of 128
CUDA cores. The board also features a quad-core ARM A57
“host” CPU @ 1.5 GHz and a single 4 GB bank of unified
memory that is shared between the the host CPU and the GPU.

Our work is novel for two primary reasons. First we
show the applicability of the NVIDIA Jetson Nano for fast
historical analysis of synchrophasor data. Second, we present
a novel GPU algorithm for performing anomaly detection in a
centralized context. Our results support the use of the NVIDIA
Jetson Nano for efficient centralized synchrophasor analysis in
WAMS systems.

III. OVERVIEW OF ALGORITHM

In designing a GPU algorithm for analyzing synchrophasor
data, there are two main challenges. First, for real data gath-
ered from actual PMUs, there is no guarantee that that when
the instrument stops measuring, that there are an equal number
of synchrophasor measurements collected from each PMU.
Secondly (and more importantly) the time-aligned nature of
synchrophasor data necessitates time-series dependencies be-
tween the elements. GPUs work the most optimally when each
element can be operated on independently. Therefore, special
care must be taken in the algorithmic design.

Suppose r is the number of unique measurands, or physical
properties to be measured (e.g. each bus voltage is a mea-
surand), captured in the time file. Each measurand ri has an
associated time series of measurements (numerical values). Let
ni be the number of measurements associated with measurand
ri. To simplifying indexing, we create an input measurement
matrix of size r × N , where N > ni, ∀ni. The remaining
N −ni elements associated with each ri in the matrix are 0s.

A second r × 5 matrix stores the requisite parameters for
analysis. For a particular measurand ri, its row includes the
total number of associated measurements ni, its constraint
boundaries (cimin, cimax), normalization factor, and maximum
allowed Fano factor fi.

Prior to the kernel run, the r×N and r× 5 input matrices
are transferred to the GPU, along with an 0-initialized r×N
output anomaly matrix. The GPU is responsible for populating
the anomaly matrix; for any measurement (i, j) in the input
matrix, the GPU places a 1 in the corresponding (i, j) location
of the anomaly matrix if a constraint anomaly is detected,
and 2 if a temporal anomaly is detected. If no anomalies are
detected, the (i, j) location in the anomaly matrix remains 0.

We initialize the kernel with t threads and (r × N)/t
blocks. Thus, each thread is responsible for computing a single
element in the anomaly matrix. For memory-efficiency, the
matrix is passed to the GPU as a single-dimension array.

Algorithm 1 depicts pseudo-code for the GPU detect func-
tion. The input is a matrix (M) of measurements, while the
output is a matrix (A) of detected anomalies. Every element
is handled by a separate thread; when r × N exceeds the
maximum allowable blocks and threads on the GPU, a grid-
stride loop [18] is employed.

Algorithm 1 Detect Algorithm Run by Each GPU Thread

1: procedure DETECT(M, A)
2: Get x;
3: while x < r ×N do . if x in range do:
4: i← x/N
5: j ← x mod N
6: Look up ni, cimin, cimax, and fi
7: if j < ni then . If valid element
8: if x is a constraint anomaly then
9: A[x]← 1 . constraint anomaly

10: else
11: Check (x− HZ . . . x) for constraint anom.
12: if no constraint anomalies then
13: compute Fano factor (x− HZ . . . x)
14: if Fano factor is greater than fi then
15: A[x]← 2 . temporal anomaly
16: end if
17: end if
18: end if
19: end if
20: Calculate new x
21: end while
22: end procedure

The algorithm first derives the (i, j) position of measure-
ment x in matrix M by setting i = x/N and j = x mod N .
This identifies the measurement as being the jth measurement
associated with measurand i. After ensuring that x is a valid
measurement, the algorithm performs a constraint check on x.
If x is a constraint anomaly, the output matrix at location A[x]
is updated with the value 1. If x falls within the bounds of
allowable variation, the algorithm next checks the previous HZ
elements for constraint anomalies. If the entire range is clear,
the Fano factor for that range is computed. If the computed
Fano factor exceeds the Fano factor limit fi, then the anomaly
matrix at position A[x] is updated with value 2.

Once the kernel finishes execution, the final anomaly matrix
is transferred back to the host for final post-processing and
printing.

IV. EXPERIMENTAL SETUP

We use three datasets to benchmark the performance of the
GPU detection algorithm: a real dataset derived from actual
PMUs, and three “processed” datasets that were generated
from the real dataset to better study performance. All bench-
marks were run on the NVIDIA Jetson Nano SBC.

The real data is derived from the USMA Smart Grid
Testbed [3], [19], a 1:1000 scaled version of 46kV power
grid that consists of eight real PMUs, seven buses and nine
transmission lines. Each PMU is configured to sample at
60 HZ and outputs new synchrophasor data ever 16.67 ms.
The data capture in each time unit consists of standard
quantities as outlined by the IEEE synchrophasor standard [6],
including voltage phasors, current phasors, and the system
frequency. Synchrophasor data is transferred to a Phasor Data

U.S. Government work not protected by U.S. copyright

Authorized licensed use limited to: West Point Military Academy. Downloaded on May 19,2021 at 23:43:15 UTC from IEEE Xplore. Restrictions apply.

Concentrator (PDC) via TCP/IP. The PDC then time aligns and
stores the data in a MySQL database. The real dataset used in
the experiments in this paper were derived from a 87-minute
run and consists of roughly 11.3 million measurements.

The processed datasets are generated using two different
scripts. Suppose the original dataset has p PMUs and m
measurements. The first script simulates p × x PMUs over a
constant time period (in this case, 87 minutes) by replicating
the dataset x times and assigning the new measurements
to new PMU measurand identifiers. The final dataset then
contains p × x total PMUs and m × x total measurements.
Increasing the number of PMUs in the dataset is more repre-
sentative of a centralized computing historical analysis case.

The second script scales up the number of PMUs by a factor
of x, while holding the number of measurements constant. It
accomplishes this by generating p × x PMUs and assigning
a subset of m/x measurements to each. This script serves to
simulate a “real-time” scenario [7], where analysis is being
performed on a large number of PMUs over a small time
period (52 seconds).

V. RESULTS

Figures 3-8 depict the performance results. For each dataset,
the GPU algorithm was benchmarked from 8 to 512 threads
in powers of 2, as the fastest time is not always achieved
at the highest number of GPU cores. For each thread-dataset
combination, the GPU program was benchmarked 5 times,
and the average time is reported. The serial version of the
algorithm was also benchmarked 5 times. Each graph depicts
the average speedup (S = Tserial

Tparallel
) of the GPU approach over

the serial algorithm.
As another point of reference, we also report the perfor-

mance of a standard multicore implementation of the algo-
rithm. The multicore version of the code is extremely straight-
forward. For r unique measurands and c cores, each thread
simply performs the detection approach on the measurements
of the r/c measurands assigned to it. We assign c = 4 since
the ARM CPU on the Jetson Nano has 4 physical cores. Due to
the embarrassingly parallel nature of the multicore approach,
the measured speedup is always close to 4, and speedup is
near-linear up to 4 cores.

A. Original dataset: 11.3 million measurements

Figure 3 shows the results of benchmarking on the the
original dataset, consisting of 8 PMUs and 11.3 million
measurements. The serial detection approach takes on average
of 25.42 seconds to complete, while the multicore version
takes 6.54 seconds. In contrast, the GPU implementation of
the algorithm takes 0.50 seconds to execute on 64 threads,
corresponding to a speedup of 50.95.

Next, we processed the 11.3 million dataset to contain
800 PMUs. This case emulates the scenario in which data is
collected from 800 PMUs over a 52 second period. Figure 4
shows the result. The maximum speedup of 51.91 is achieved
with 256 GPU threads, corresponding to an average run time
of 0.48 seconds.

Fig. 3: Speedup Results on 8 PMUs, 11.3 Million Measure-
ments

Fig. 4: Speedup Results on 800 PMUs, 11.3 Million Measure-
ments

B. Large dataset: 33.9 million measurements

To study the performance on even larger datasets, we first
processed the original 8 PMU dataset to represent a larger
dataset of 24 PMUs consisting of measurements taken over
a 87-minute collection period. This larger dataset contains
33.9 million measurements and is roughly 2.5 GB in size.

Figure 5 depicts the benchmarking results of the 24-PMU
dataset. The GPU version of the algorithm took just 1.69
seconds to complete on 64 threads, compared to 76.49 seconds
serially, a speedup of 45.09. It is worth noting that the GPU
approach is also 11.5 times faster than the multicore approach
on this same dataset, which averaged at 19.50 seconds.

Consistent with our first set of experiments, we next pro-
cessed the 33.9 million measurement dataset to contain 2400
PMUs, emulating the scenario when 2400 PMUs were collect-
ing data over a 52 second time frame. The results are shown

U.S. Government work not protected by U.S. copyright

Authorized licensed use limited to: West Point Military Academy. Downloaded on May 19,2021 at 23:43:15 UTC from IEEE Xplore. Restrictions apply.

Fig. 5: Speedup Results on 24 PMUs, 33.9 Million Measure-
ments

Fig. 6: Speedup Results on 2400 PMUs, 33.9 Million Mea-
surements

in Figure 6. The maximum speedup of 45.75 was achieved on
64 threads, corresponding to a run time of 1.64 seconds. In
contrast, the serial implementation took 74.87 seconds, while
the multicore version took 19.15 seconds.

C. Memory intensive dataset: 45.2 million measurements

A key bottleneck discovered during benchmarking is mem-
ory. As previously mentioned, the NVIDIA Jetson Nano has
4 GB of unified Random Access Memory that is shared
between the GPU and CPU. Roughly 1.2 GB of memory is
used by the CPU for kernel-related processes.

In our prior benchmarks, our datasets fit within the available
memory of the Jetson Nano. In this last set of benchmarks we
process the real dataset to generate a new dataset representing
measurements from 32 different PMUs over 87 minutes. This
new dataset contains 45.2 million measurements (3.2 GB) and

Fig. 7: Speedup Results on 32 PMUs, 45.2 Million Measure-
ments

Fig. 8: Speedup Results on 3200 PMUs, 45.2 Million Mea-
surements

is the largest that would run on the Jetson Nano (any datasets
of larger size were automatically killed by the kernel).

Figure 7 shows the benchmarking results of the 45.2 million
measurement dataset. The speedup results on this dataset are
considerably lower than the prior datasets, with the maximum
speedup of 20.06 (5.07 seconds) achieved on 32-threads. It is
worth noting however that the GPU approach is still up to 5.25
times faster than the multicore approach, which completed the
detection process in 26.65 seconds.

Next, we scaled up the number PMUs in the memory-
intensive set to 3200, emulating the scenario where 3200
PMUs are generating data over a 52-second period. The
results are shown in Figure 8. Interestingly the speedup results
are even lower in this set of experiments; the maximum
speedup of 17.92 (5.58 seconds) was achieved on 64 GPU
threads. However, even in this case, the GPU approach is

U.S. Government work not protected by U.S. copyright

Authorized licensed use limited to: West Point Military Academy. Downloaded on May 19,2021 at 23:43:15 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Peak Power Consumption (Watts)

8 800 24 2400 32 3200
Serial 5.1 5 5.2 5.2 6.0 6.0

Multicore 7.9 7.8 7.9 7.9 8.2 8.2
GPU 7.1 7.1 8.5 8.5 9.3 9.4

Fig. 9: Comparison of Energy Consumption

still 4.69 times faster than the multicore approach, which took
26.21 seconds on average.

D. Energy consumption analysis

We measured the power consumption of the NVIDIA Jetson
Nano using a KillAWatt [20] electricity use monitor. Table I
shows the peak power consumption of each algorithm mea-
sured over each dataset. The listed observations for the serial
and multicore approaches are derived from the peak power
consumption reading for each dataset over five runs. The listed
observation for the GPU approach are derived from five runs
of each dataset and each thread combination.

Larger datasets require more power than smaller datasets.
The Jetson Nano SBC consumes approximately 3.8 Watts
of power when idle, and between 5.0 to 6.0 Watts when
running the serial approach. The multicore approach draws
between 7.8 to 8.2 Watts of power. Lastly, the GPU power
consumption spikes to 9.4 Watts on the largest datasets. All
of these measurements are well within the NVIDIA Jetson
Nano’s power budget of 10 Watts, which is comparable to an
LED light bulb.

Figure 9 compares the total energy consumed (in Watt-
seconds) by each approach on the NVIDIA Jetson Nano.
Given the fidelity, and lack of data logging of the KillAWatt,
peak power values were used to estimate energy consumption.
Specifically, energy was estimated by the product of peak
power consumption and average run-time in seconds (Watt-
seconds, or W-s). In addition to the serial and multicore
approaches, Figure 9 also depicts the energy consumption
of the slowest measured GPU approach (worst case) and the
fastest measured GPU approach (best case) for each dataset.

Unsurprisingly, the serial dataset consumes the most energy,
with up to 611 W-s being consumed during the benchmark
of the 32-PMU dataset. The multicore approach uses signifi-
cantly less energy, consuming up to 218 W-s on the 32-PMU
dataset (64% energy reduction). However, the GPU approaches
consistently use the least amount of energy, with the fastest
approach using just 47.23 W-s of energy on the 32-PMU
dataset (92.3% energy reduction). These results highlight the
energy efficiency of the GPU algorithm when run on the
NVIDIA Jetson Nano. Note that the GPU numbers represent
a 78.4% reduction in energy from the multicore approach.

VI. CONCLUSION

Power grids require rapid anomaly detection approaches in
order to maximize situational awareness and minimize the
risk of power outages. While high-fidelity devices such as
PMUs can increase the situational awareness of the grid,
new computational methods must be developed to efficiently
analyze the resulting glut of data. This paper presents a
novel GPU algorithm for performing historical analysis of
synchrophasor data and presents its efficacy on the recently
released NVIDIA Jetson Nano single board computer.

Our results show that the Jetson Nano can analyze 33.9
million synchrophasor measurements in under 2 seconds for
anomalies, which is 45.09 times faster than a CPU-bound
serial approach, and 11.67 times faster than a multicore
approach. While our experiments suggest that the Jetson Nano
can analyze up to 45.2 million synchrophasor measurements,
the size of this dataset causes the Jetson Nano to utilize quite
a bit of its swap space, reducing the maximum speedup to
23.11. However, in all cases, the GPU algorithm is several
times faster than multicore approach, and uses up to 92.3%
less energy than the serial approach and up to 78.4% less
energy than the multicore approach.

The 4 gigabytes of RAM on the Jetson Nano is a key
performance bottleneck. This paper concentrates on the detec-
tion component of the anomaly detection process, the most
time-intensive component. However, before anomaly detec-
tion occurs, the measurements must be read from the input
file and aggregated into a global hashtable that organizes
measurements in a time-synchronized manner by measurand.
GPUs were not designed to build dynamic data structures
like hashtables; the existing literature recommends that such
structures be populated on the CPU [18]. We note that the Jet-
son Nano’s 4 GB memory limit and parallel read bottlenecks
of microSD cards limit the efficacy of a multicore hashtable
building approach on the CPU. Future work will explore how
to reduce hashtable build times on the Jetson Nano.

ACKNOWLEDGMENT

Funding for this project is provided by the DOD High
Performance Computing Modernization Program (HPCMP)
and the Army Futures Command. The views expressed in this
article are those of the author and do not reflect the official
policy or position of the Department of the Army, Department
of Defense or the U.S. Government.

U.S. Government work not protected by U.S. copyright

Authorized licensed use limited to: West Point Military Academy. Downloaded on May 19,2021 at 23:43:15 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] J. Chadwick, “How a smarter grid could have prevented the 2003 U.S.
cascading blackout,” in 2013 IEEE Power and Energy Conference at
Illinois (PECI), 2016, pp. 65–71.

[2] A. Muir and L. J., “Final report on the August 14, 2003 blackout in the
United States and Canada : causes and recommendations,” Apr 2004.

[3] S. Drakontaidis, M. Stanchi, G. Glazer, J. Hussey, A. St. Leger, and S. J.
Matthews, “Towards energy-proportional anomaly detection in the smart
grid,” in 2018 IEEE High Performance extreme Computing Conference
(HPEC), 2018, pp. 1–7.

[4] S. J. Matthews and A. St. Leger, “Leveraging single board computers for
anomaly detection in the smart grid,” in 2017 IEEE 8th Annual Ubiq-
uitous Computing, Electronics and Mobile Communication Conference
(UEMCON), 2017, pp. 437–443.

[5] K. Candelario, C. Booth, A. St. Leger, and S. J. Matthews, “Investigating
a raspberry pi cluster for detecting anomalies in the smart grid,” in 2017
IEEE MIT Undergraduate Research Technology Conference (URTC),
2017, pp. 1–4.

[6] “IEEE standard for synchrophasor measurements for power systems,”
IEEE Std C37.118.1-2011 (Revision of IEEE Std C37.118-2005), pp.
1–61, 2011.

[7] S. J. Matthews and A. St. Leger, “Leveraging mapreduce and syn-
chrophasors for real-time anomaly detection in the smart grid,” IEEE
Transactions on Emerging Topics in Computing, vol. 7, no. 3, pp. 392–
403, 2019, first published in 2017.

[8] D. J. Sooknanan and A. Joshi, “GPU computing using CUDA in the
deployment of smart grids,” in 2016 SAI Computing Conference (SAI),
2016, pp. 1260–1266.

[9] D. Ablakovic, I. Dzafic, and S. Kecici, “Parallelization of radial three-
phase distribution power flow using GPU,” in 2012 3rd IEEE PES
Innovative Smart Grid Technologies Europe (ISGT Europe), 2012, pp.
1–7.

[10] Z. Li, V. D. Donde, J. Tournier, and F. Yang, “On limitations of tra-
ditional multi-core and potential of many-core processing architectures
for sparse linear solvers used in large-scale power system applications,”
in 2011 IEEE Power and Energy Society General Meeting, 2011, pp.
1–8.

[11] H. Karimipour and V. Dinavahi, “Extended kalman filter-based parallel
dynamic state estimation,” IEEE Transactions on Smart Grid, vol. 6,
no. 3, pp. 1539–1549, 2015.

[12] ——, “Parallel relaxation-based joint dynamic state estimation of
large-scale power systems,” IET Generation, Transmission Distribution,
vol. 10, no. 2, pp. 452–459, 2016.

[13] R. C. Green, L. Wang, and M. Alam, “High performance computing for
electric power systems: Applications and trends,” in 2011 IEEE Power
and Energy Society General Meeting, 2011, pp. 1–8.

[14] ——, “Applications and trends of high performance computing for
electric power systems: Focusing on smart grid,” IEEE Transactions
on Smart Grid, vol. 4, no. 2, pp. 922–931, 2013.

[15] H. Karimipour and H. Leung, “Relaxation-based anomaly detection
in cyber-physical systems using ensemble kalman filter,” IET Cyber-
Physical Systems: Theory Applications, vol. 5, no. 1, pp. 49–58, 2020.

[16] D. Chen, H. Jiang, Y. Li, and D. Xu, “A two-layered parallel static secu-
rity assessment for large-scale grids based on GPU,” IEEE Transactions
on Smart Grid, vol. 8, no. 3, pp. 1396–1405, 2017.

[17] E. Belič, N. Lukač, K. Deželak, B. Žalik, and G. Štumberger, “GPU-
based online optimization of low voltage distribution network operation,”
IEEE Transactions on Smart Grid, vol. 8, no. 3, pp. 1460–1468, 2017.

[18] J. Sanders and E. Kandrot, CUDA by example: an introduction to
general-purpose GPU programming. Addison-Wesley, 2011.

[19] A. St. Leger, J. Spruce, T. Banwell, and M. Collins, “Smart grid testbed
for wide-area monitoring and control systems,” in 2016 IEEE/PES
Transmission and Distribution Conference and Exposition (T D), 2016,
pp. 1–5.

[20] P3 International, “Killawatt,” Internet Website, last accessed 11/12/2019,
2018, http://www.p3international.com/products/p4400.html.

U.S. Government work not protected by U.S. copyright

Authorized licensed use limited to: West Point Military Academy. Downloaded on May 19,2021 at 23:43:15 UTC from IEEE Xplore. Restrictions apply.

