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1. Introduction
 The U.S. Army is developing a system called the 

Automated Direct Indirect Mortar (ADIM) system [1]. The ADIM 
is mounted to a high mobility multipurpose wheeled vehicle 
(HMMWV) and fires belt-fed 81mm mortar rounds. This system 
increases the capability of the conventional mortar by adding 
some key features. The most important features are the speed at 
which it can fire, stabilize, and re-fire, and the ability to conduct 
“shoot and scoot” missions. Shoot and scoot missions provide a 
key advantage, allowing the mortar operators to fire and leave 
the area before an enemy can acquire their location via radar 
and counter fire. This increased capability of lethality, provided by 
the rate of fire, survivability, and increased mobility, is essential 
to maintaining our technological superiority on the battlefield. 
However, the ADIM cannot be used to its full potential because 
of a limitation with current 81mm mortar rounds. Current mortar 
rounds must have their fuzes manually set prior to being loaded 
into the ADIM. This requires the system to be unloaded if the de-
sired fuze setting is not available in the magazine, severely limiting 
the speed of operation. 

 In order for the ADIM system to reach its full and future 
potential, 81mm rounds must have several key qualities that 
current munitions lack. First, they must be “smart”, accepting GPS 
locations allowing for flight alteration and precision fires. Second, 
the round’s fuze setting must be able to be set and changed 
remotely. These capabilities do not currently exist. Additionally, the 
system must have a user-friendly interface, the rounds must be 
initially powered from the battery of a HMMWV, and they must 
retain power for the duration of flight. 

 An undergraduate capstone project at the United States 
Military Academy (USMA) called Remotely Operated Automated 
Mortar System (ROAMS) attempted to tackle these shortcom-
ings during the 2013-2014 academic year. In the first iteration of 
this multi-year project, the focus was to optimize the fuze setting 
remotely.
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The ROAMS system uses Raspberry Pis to simulate the hard-
ware of the magazine server and individual smart-round mortars. 
The Raspberry Pi [2] is a popular, credit-card sized single-board 
computer (SBC) that retails for $35.00. The choice of Raspberry 
Pis enables the design team to cheaply prototype the hardware 
that would eventually be included in a custom integrated circuit 
(IC) for the smart rounds. Due to its ease of programmability, 
Python was selected as the language of choice to program the 
magazine server. The magazine server communicated with the 
smart-round Raspberry Pis using Python threads, simulating a 
classic “client-server” system. 

The initial prototype worked well when interfaced with a test 
system consisting of four mortar rounds. However, the program’s 
responsiveness and usability decreased as the number of fuze 
clients increased. This is especially problematic as the ADIM mor-
tar chamber has a 20-round capacity. The responsiveness issue 
is particularly troubling because on the battlefield, every second 
counts. This work attempts to tackle this problem by redesigning 
the ROAMS system to support efficient remote fuze-setting. 

This paper analyzes a redesign of the ROAMS magServer-
client system using the Message Passing Interface (MPI) [3] and 
the C language. In order to test the scalability of the ROAMS 
system, a cluster of 21 Raspberry Pis was built to simulate the 
full ADIM system. We measure the performance of the MPI 
system and compare it to the client-server system implemented 
in Python. The MPI implementation results in a time reduction 
of up to 90 percent of the original Python prototype, suggesting 
that MPI is a promising technique to improve the speed of remote 
fuze setting. 

The rest of the paper is organized as follows. Section II gives 
a detailed over view of the original ROAMS prototype, its key 
limitation, and motivations to transition to C and MPI. Section III 
describes the redesign of ROAMS to use MPI. Finally, prelimi-
nary results and conclusions are presented in Sections IV and V 
respectively.

Figure 1: Overview of ROAMS system.

2. Overview of the ROAMS System
Figure 1 illustrates a simplified network layout of the 

ROAMS system prototype. A Raspberry Pi is used to 
simulate the microprocessor needed in each smart-round, 
and a central Raspberry Pi acts as the magazine server (or 
magServer). An Android tablet serves as an interface for 
soldiers to control the magServer and, by extension, the 
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mortar rounds themselves. The magServer as originally designed 
has four jobs: 

• Establish connection with every mortar and store its  
 state information.

• Establish connection with the tablet and provide an  
 On-Demand list of mortars at its disposal.

• Accept and relay all commands from the user to  
 the rounds.

• Provide setting verification on all rounds in its control.

The Android tablet accomplishes this by displaying the list of 
available mortar rounds for the user to select, and allows them to 
change the fuze setting and or GPS data. The magServer begins 
by setting up both a wired and wireless network interface. The 
server then connects to the user’s Android interface device on 
the wired interface, and listens for mortar round connections on 
the wireless interface. When a mortar round is connected, the 
magServer adds it to the inventory and transmits to the tablet an 
updated list of mortar rounds. The server maintains a list of all 
rounds in its magazine, as well as their specific attributes (such 
as fuze setting and GPS coordinates).

The ROAMS remote fuze communication system was set up 
using a series of sockets following a classic server-client rela-
tionship. The magServer acts as the focal point between the cli-
ent fuzes and the user interface. Whenever the server starts up, 
it runs a single-threaded Python script that accepts connections 
from the fuzes and the user interface. It then maintains a list of 
fuzes—with their relevant information—dynamically and sends 
update information out from the user interface. It also keeps the 
user interface updated on any change in fuze settings.

Python Limitations
A key limitation of the original ROAMS system was its use of 

Python to implement client-server threading. While a very popular 
language, Python is a very inefficient choice for multithreaded 
applications. This was highlighted in the late 2000’s by David 
Beazley, who implicated Python’s Global Interpreter Lock (GIL) 
as the source of its performance issues [4]. The GIL essentially 
forces Python programs to only run one thread at a time, even if 
a Python program is multi-threaded. This design decision exists 
to enforce memory safety in the Python interpreter. 

Consequently, a program running two Python threads can run 
twice as slow as a Python program running a single thread. The 
Python community has resisted calls to remove the GIL, as doing 
so will reduce the safety of Python applications and reduce the 
speed of single threaded programs. All of these reasons suggest 
that Python is (for the immediate) a poor choice for creating a 
multi-threaded application.

Transition to C and MPI
These limitations forced the design team to explore other 

languages to better support multi-threading. The team settled on 
the C language, mainly due its native support for multi-threading, 
which is executed at the operating system level. While the onus 
for enforcing memory and thread-safety rests solely on the 
shoulders of the developer, C allows for more opportunities to 
enhance performance. 

While C fully supports network socket programming over TCP/
IP, the Message Passing Interface (MPI) library is used to enable 
the magServer to communicate with the individual clients. MPI is 
a standard in the high performance computing world, and is de-
signed to enable efficient and scalable communication between 
multiple computers. The MPI library also has support for asyn-
chronous communication and collective communication opera-
tions, which can drastically increase the rate at which messages 
are sent and received.

3. Methods
Figure 2 shows the custom 21-node Raspberry Pi B+ cluster 

built to simulate the full ADIM system. Each node in this cluster 
requires a USB wireless adaptor to both broadcast and receive 
wireless signals, similar to the intended implementation. Each 
node uses a 4GB microSD card to run the Linux operating sys-
tem and store magServer and smart-round client program files. 
The cluster also requires a power supply to replicate the HMMWV 
battery for each node. 

A custom power supply was built for the project that provides 
surge protection, voltage conversion, and eliminates the need for 
21 separate power cords. The custom case design enables the 
entire system to be passively cooled. The magServer node also 
requires a special wireless adapter to host the wireless network. 
Cluster and implementation details are discussed in detail below.

Cluster Configuration Details
The master Raspberry Pi node acts as a wireless access point 

(WAP) and dynamic host configuration protocol (DHCP) server 
for the project using instructions procured from the Raspberry Pi 
HQ website [5]. The South Hampton Raspberry Pi cluster tutorial 
[6] was a starting point to set up MPI on our cluster. 

This application uses a custom DHCP server to assign IP 
addresses to each node in the cluster, requiring some additional 
configurations not outlined in the South Hampton tutorial. For 
example, the SSH configuration file was modified to disable re-
verse DNS lookup. Next, a Python script was added to send each 
worker’s IP address to the magServer when the system initially 
boots up. This enables the magServer to automatically know at 
start-up the number of available worker nodes (active rounds) and 
their respective IP addresses. 

Figure 2: Final Raspberry Pi cluster.
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ROAMS MPI Implementation
In the context of ROAMS, the magServer can be thought of 

a “master” node that passes messages to a series of “worker” 
nodes (smart rounds) in the ADIM magazine. Upon start up, the 
magServer has a list of the available “active” rounds in the maga-
zine. Each message sent from the magServer to a particular smart 
round contains a set of commands to set its fuze. Each worker, 
upon receiving its message and setting its fuze, sends back a 
confirmation message. 

For the scope of this paper, the design uses point-to-point com-
municators MPI_Send and MPI_Recv to implement the communi-
cation model. The MPI_Send function enables the magServer to 
send a message to a worker node. The MPI_Recv function allows 
a worker node to receive a message from the magServer. Thus, a 
pair of MPI_Send/MPI_Recv communicators is necessary each 
time a message is sent from the magServer to the worker nodes, 
or vice versa.

supported fuze clients is increased from one to twenty, in incre-
ments of five. We measure the percentage of run-time reduction 
by use the equation (1-M/P)×100 where M and P are the execu-
tion times of the MPI and Python implementations, respectively.

Sending a Message to Fuze Clients
Figure 3 shows the average time it takes each implementation 

to send fuze data to all the clients. In this particular execution 
stage, the Python implementation performs moderately well, with 
execution time ranging from 0.00267 seconds on a single fuze 
to 3.37702 seconds on twenty fuzes. While the MPI implementa-
tion also experiences a modest increase in running time, it takes 
0.03241 on a single fuze and 0.62245 seconds on twenty, requir-
ing less than a second to compute regardless of the number of 
fuzes. This represents an 81.56 percent reduction in time for 
transmitting messages to the full twenty rounds.

Receiving Confirmation from Fuze Clients
Figure 4 depicts the average time it takes the Python version 

to receive confirmation from all the fuze clients compared to the 
MPI implantation. When dealing with five fuzes, it takes 1.529 
seconds for the Python implementation to receive confirmation. 
However, as the number of fuzes increases to fifteen, the Python 
threaded version takes on average 5.677 seconds. At twenty cli-
ents, it takes the Python implementation 8.337 seconds on aver-
age. In contrast, the MPI implementation takes 0.05375 seconds 
on average to receive confirmation from a single fuze, 0.74295 
seconds for fifteen fuzes, and 0.83812 seconds for twenty. This 
corresponds to reduction in running time of 89.95 percent.
5. Conclusion

Figure 4: Time required to receive confirmation from fuzes.

4. Results
 The scalability of MPI compared to the Python client-

server program is benchmarked by measuring two stages of 
execution: the time taken to send a message indicating a change 
in one or more clients’ status (Figure 3), and the time taken to 
receive acknowledgement from the fuze clients that the change 
was made and implemented (Figure 4). 

These experiments do not consider the time needed to com-
municate to the user interface, as scaling efficiency issues are not 
applicable in this context. The experiments also don’t reflect the 
amount of time needed to acquire fuze clients during operation. 
This is due to the current system’s inability to properly simulate 
when a mortar is fired. The conclusion section includes a discus-
sion detailing what a proper future simulation of the process will 
look like, and some hypotheses on running time.  

For each execution stage, the running time of the threaded 
Python implementation is compared against the MPI version. To 
illustrate scalability, the run time is measured as the number of 

Figure 3: Time spent sending orders to new fuzes.

 The experimental results clearly show the benefit of 
using the MPI implementation for remotely setting fuze clients on 
ROAMS. Using MPI allows ROAMS to reduce the time necessary 
to acquire fuze information by up to 89.95 percent, correspond-
ing to a speed up of 10.54. In all execution stages, it takes MPI 
less than a second to perform the desired task, regardless of the 
number of fuzes. In contrast, the Python implementation can take 
up to ten seconds.

While the difference may seem marginal on the surface, every 
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second counts on the battlefield. The current ADIM system has a 
fire rate of 30 rounds per minute, or a round every two seconds. 
Therefore, the reductions from 3.3 and 8.3 seconds to less than a 
second correspond to possibly two to four more rounds directed 
at the enemy. When a soldier is in contact with the enemy in a 
firefight, two to four mortar rounds could be the difference be-
tween achieving the objective and failing to suppress the enemy. 
In order for the ADIM to be useful, a soldier needs to know as 
soon as possible that the changes were received and his equip-
ment is ready for use so he can continue to react to the ever 
changing battlefield. 

These results also indicate the superiority of using MPI to 
achieve system scalability. MPI is a long-standing standard for a 
reason. The experimental results clearly show that it is faster than 
standard Python sockets for broadcasting and receiving messag-
es from many nodes. We encourage other developers designing 
server-client systems to explore MPI as a potential library to im-
prove performance. Future work will explore other MPI operations, 
such as collective and asynchronous communication constructs, 
in a further effort to improve performance in the ROAMs system.

Notably, the current experimentation does not include the 
amount of time needed to maintain the list of active fuze clients. 
As each round is fired from the chamber, it becomes “inactive.” 
When a new mortar is inserted into the chamber, the round 
becomes “active.” In both cases, the magServer needs to know 
about the change of status in individual rounds to maintain an 
accurate list of the mortars available at any given time.

Message passing can assist in keeping the magServer updated 
as follows. Every time a mortar is fired, it sends a message to the 
magServer indicating that it is no longer active. The magServer, 
upon receiving the message, will need to remove the mortar’s 
IP address from the list of “available” IPs. When a new mortar 
is added to the chamber, it sends a message to the magServer 
notifying that the round is active. Upon receiving the message, the 
magServer adds the new IP address to the list of “available” IPs. 
Regardless of whether a new round is “acquired” or “disabled/
fired”, the cost is a single send/receive operation plus the time 
needed to update the list. 

The preliminary results suggest that the time needed to send/
receive a single message using MPI takes between 0.03 and 
0.05 seconds, a trivial amount. Since ADIM’s capacity is twenty 
rounds, it is hypothesized that the time needed to update the list 
is negligible. A thorough simulation of mortars firing and being 
reloaded is needed to fully test this hypothesis. We plan to make 
this the focus of our future work. 
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