
12 CrossTalk—November/December 2015

FUSING IT & REAL-TIME TACTICAL

1. Introduction
 The U.S. Army is developing a system called the

Automated Direct Indirect Mortar (ADIM) system [1]. The ADIM
is mounted to a high mobility multipurpose wheeled vehicle
(HMMWV) and fires belt-fed 81mm mortar rounds. This system
increases the capability of the conventional mortar by adding
some key features. The most important features are the speed at
which it can fire, stabilize, and re-fire, and the ability to conduct
“shoot and scoot” missions. Shoot and scoot missions provide a
key advantage, allowing the mortar operators to fire and leave
the area before an enemy can acquire their location via radar
and counter fire. This increased capability of lethality, provided by
the rate of fire, survivability, and increased mobility, is essential
to maintaining our technological superiority on the battlefield.
However, the ADIM cannot be used to its full potential because
of a limitation with current 81mm mortar rounds. Current mortar
rounds must have their fuzes manually set prior to being loaded
into the ADIM. This requires the system to be unloaded if the de-
sired fuze setting is not available in the magazine, severely limiting
the speed of operation.

 In order for the ADIM system to reach its full and future
potential, 81mm rounds must have several key qualities that
current munitions lack. First, they must be “smart”, accepting GPS
locations allowing for flight alteration and precision fires. Second,
the round’s fuze setting must be able to be set and changed
remotely. These capabilities do not currently exist. Additionally, the
system must have a user-friendly interface, the rounds must be
initially powered from the battery of a HMMWV, and they must
retain power for the duration of flight.

 An undergraduate capstone project at the United States
Military Academy (USMA) called Remotely Operated Automated
Mortar System (ROAMS) attempted to tackle these shortcom-
ings during the 2013-2014 academic year. In the first iteration of
this multi-year project, the focus was to optimize the fuze setting
remotely.

Augmenting the Remotely
Operated Automated Mortar
System with Message Passing
Zachary J. Ramirez, United States Military Academy
Raymond W. Blaine, United States Military Academy
Suzanne J. Matthews, United States Military Academy

Abstract. This paper looks at how the Message Passing Interface (MPI) can
assist a prototype U.S. Army vehicle mounted mortar launcher system called the
Automated Direct Indirect Mortar (ADIM). The ADIM’s capabilities are augmented
by the Remotely Automated Mortar System (ROAMS) by enabling fuzes to be set
remotely. The performance of the initial ROAMS prototype, a threaded Python
server using Raspberry Pis, is limited by Python’s Global Interpreter Lock (GIL).
In this paper, the prototype is redesigned using MPI and the C programming
language to dramatically improve the efficiency of the system.

The ROAMS system uses Raspberry Pis to simulate the hard-
ware of the magazine server and individual smart-round mortars.
The Raspberry Pi [2] is a popular, credit-card sized single-board
computer (SBC) that retails for $35.00. The choice of Raspberry
Pis enables the design team to cheaply prototype the hardware
that would eventually be included in a custom integrated circuit
(IC) for the smart rounds. Due to its ease of programmability,
Python was selected as the language of choice to program the
magazine server. The magazine server communicated with the
smart-round Raspberry Pis using Python threads, simulating a
classic “client-server” system.

The initial prototype worked well when interfaced with a test
system consisting of four mortar rounds. However, the program’s
responsiveness and usability decreased as the number of fuze
clients increased. This is especially problematic as the ADIM mor-
tar chamber has a 20-round capacity. The responsiveness issue
is particularly troubling because on the battlefield, every second
counts. This work attempts to tackle this problem by redesigning
the ROAMS system to support efficient remote fuze-setting.

This paper analyzes a redesign of the ROAMS magServer-
client system using the Message Passing Interface (MPI) [3] and
the C language. In order to test the scalability of the ROAMS
system, a cluster of 21 Raspberry Pis was built to simulate the
full ADIM system. We measure the performance of the MPI
system and compare it to the client-server system implemented
in Python. The MPI implementation results in a time reduction
of up to 90 percent of the original Python prototype, suggesting
that MPI is a promising technique to improve the speed of remote
fuze setting.

The rest of the paper is organized as follows. Section II gives
a detailed over view of the original ROAMS prototype, its key
limitation, and motivations to transition to C and MPI. Section III
describes the redesign of ROAMS to use MPI. Finally, prelimi-
nary results and conclusions are presented in Sections IV and V
respectively.

Figure 1: Overview of ROAMS system.

2. Overview of the ROAMS System
Figure 1 illustrates a simplified network layout of the

ROAMS system prototype. A Raspberry Pi is used to
simulate the microprocessor needed in each smart-round,
and a central Raspberry Pi acts as the magazine server (or
magServer). An Android tablet serves as an interface for
soldiers to control the magServer and, by extension, the

CrossTalk—November/December 2015 13

FUSING IT & REAL-TIME TACTICAL

mortar rounds themselves. The magServer as originally designed
has four jobs:

• Establish connection with every mortar and store its
 state information.

• Establish connection with the tablet and provide an
 On-Demand list of mortars at its disposal.

• Accept and relay all commands from the user to
 the rounds.

• Provide setting verification on all rounds in its control.

The Android tablet accomplishes this by displaying the list of
available mortar rounds for the user to select, and allows them to
change the fuze setting and or GPS data. The magServer begins
by setting up both a wired and wireless network interface. The
server then connects to the user’s Android interface device on
the wired interface, and listens for mortar round connections on
the wireless interface. When a mortar round is connected, the
magServer adds it to the inventory and transmits to the tablet an
updated list of mortar rounds. The server maintains a list of all
rounds in its magazine, as well as their specific attributes (such
as fuze setting and GPS coordinates).

The ROAMS remote fuze communication system was set up
using a series of sockets following a classic server-client rela-
tionship. The magServer acts as the focal point between the cli-
ent fuzes and the user interface. Whenever the server starts up,
it runs a single-threaded Python script that accepts connections
from the fuzes and the user interface. It then maintains a list of
fuzes—with their relevant information—dynamically and sends
update information out from the user interface. It also keeps the
user interface updated on any change in fuze settings.

Python Limitations
A key limitation of the original ROAMS system was its use of

Python to implement client-server threading. While a very popular
language, Python is a very inefficient choice for multithreaded
applications. This was highlighted in the late 2000’s by David
Beazley, who implicated Python’s Global Interpreter Lock (GIL)
as the source of its performance issues [4]. The GIL essentially
forces Python programs to only run one thread at a time, even if
a Python program is multi-threaded. This design decision exists
to enforce memory safety in the Python interpreter.

Consequently, a program running two Python threads can run
twice as slow as a Python program running a single thread. The
Python community has resisted calls to remove the GIL, as doing
so will reduce the safety of Python applications and reduce the
speed of single threaded programs. All of these reasons suggest
that Python is (for the immediate) a poor choice for creating a
multi-threaded application.

Transition to C and MPI
These limitations forced the design team to explore other

languages to better support multi-threading. The team settled on
the C language, mainly due its native support for multi-threading,
which is executed at the operating system level. While the onus
for enforcing memory and thread-safety rests solely on the
shoulders of the developer, C allows for more opportunities to
enhance performance.

While C fully supports network socket programming over TCP/
IP, the Message Passing Interface (MPI) library is used to enable
the magServer to communicate with the individual clients. MPI is
a standard in the high performance computing world, and is de-
signed to enable efficient and scalable communication between
multiple computers. The MPI library also has support for asyn-
chronous communication and collective communication opera-
tions, which can drastically increase the rate at which messages
are sent and received.

3. Methods
Figure 2 shows the custom 21-node Raspberry Pi B+ cluster

built to simulate the full ADIM system. Each node in this cluster
requires a USB wireless adaptor to both broadcast and receive
wireless signals, similar to the intended implementation. Each
node uses a 4GB microSD card to run the Linux operating sys-
tem and store magServer and smart-round client program files.
The cluster also requires a power supply to replicate the HMMWV
battery for each node.

A custom power supply was built for the project that provides
surge protection, voltage conversion, and eliminates the need for
21 separate power cords. The custom case design enables the
entire system to be passively cooled. The magServer node also
requires a special wireless adapter to host the wireless network.
Cluster and implementation details are discussed in detail below.

Cluster Configuration Details
The master Raspberry Pi node acts as a wireless access point

(WAP) and dynamic host configuration protocol (DHCP) server
for the project using instructions procured from the Raspberry Pi
HQ website [5]. The South Hampton Raspberry Pi cluster tutorial
[6] was a starting point to set up MPI on our cluster.

This application uses a custom DHCP server to assign IP
addresses to each node in the cluster, requiring some additional
configurations not outlined in the South Hampton tutorial. For
example, the SSH configuration file was modified to disable re-
verse DNS lookup. Next, a Python script was added to send each
worker’s IP address to the magServer when the system initially
boots up. This enables the magServer to automatically know at
start-up the number of available worker nodes (active rounds) and
their respective IP addresses.

Figure 2: Final Raspberry Pi cluster.

14 CrossTalk—November/December 2015

FUSING IT & REAL-TIME TACTICAL

ROAMS MPI Implementation
In the context of ROAMS, the magServer can be thought of

a “master” node that passes messages to a series of “worker”
nodes (smart rounds) in the ADIM magazine. Upon start up, the
magServer has a list of the available “active” rounds in the maga-
zine. Each message sent from the magServer to a particular smart
round contains a set of commands to set its fuze. Each worker,
upon receiving its message and setting its fuze, sends back a
confirmation message.

For the scope of this paper, the design uses point-to-point com-
municators MPI_Send and MPI_Recv to implement the communi-
cation model. The MPI_Send function enables the magServer to
send a message to a worker node. The MPI_Recv function allows
a worker node to receive a message from the magServer. Thus, a
pair of MPI_Send/MPI_Recv communicators is necessary each
time a message is sent from the magServer to the worker nodes,
or vice versa.

supported fuze clients is increased from one to twenty, in incre-
ments of five. We measure the percentage of run-time reduction
by use the equation (1-M/P)×100 where M and P are the execu-
tion times of the MPI and Python implementations, respectively.

Sending a Message to Fuze Clients
Figure 3 shows the average time it takes each implementation

to send fuze data to all the clients. In this particular execution
stage, the Python implementation performs moderately well, with
execution time ranging from 0.00267 seconds on a single fuze
to 3.37702 seconds on twenty fuzes. While the MPI implementa-
tion also experiences a modest increase in running time, it takes
0.03241 on a single fuze and 0.62245 seconds on twenty, requir-
ing less than a second to compute regardless of the number of
fuzes. This represents an 81.56 percent reduction in time for
transmitting messages to the full twenty rounds.

Receiving Confirmation from Fuze Clients
Figure 4 depicts the average time it takes the Python version

to receive confirmation from all the fuze clients compared to the
MPI implantation. When dealing with five fuzes, it takes 1.529
seconds for the Python implementation to receive confirmation.
However, as the number of fuzes increases to fifteen, the Python
threaded version takes on average 5.677 seconds. At twenty cli-
ents, it takes the Python implementation 8.337 seconds on aver-
age. In contrast, the MPI implementation takes 0.05375 seconds
on average to receive confirmation from a single fuze, 0.74295
seconds for fifteen fuzes, and 0.83812 seconds for twenty. This
corresponds to reduction in running time of 89.95 percent.
5. Conclusion

Figure 4: Time required to receive confirmation from fuzes.

4. Results
 The scalability of MPI compared to the Python client-

server program is benchmarked by measuring two stages of
execution: the time taken to send a message indicating a change
in one or more clients’ status (Figure 3), and the time taken to
receive acknowledgement from the fuze clients that the change
was made and implemented (Figure 4).

These experiments do not consider the time needed to com-
municate to the user interface, as scaling efficiency issues are not
applicable in this context. The experiments also don’t reflect the
amount of time needed to acquire fuze clients during operation.
This is due to the current system’s inability to properly simulate
when a mortar is fired. The conclusion section includes a discus-
sion detailing what a proper future simulation of the process will
look like, and some hypotheses on running time.

For each execution stage, the running time of the threaded
Python implementation is compared against the MPI version. To
illustrate scalability, the run time is measured as the number of

Figure 3: Time spent sending orders to new fuzes.

 The experimental results clearly show the benefit of
using the MPI implementation for remotely setting fuze clients on
ROAMS. Using MPI allows ROAMS to reduce the time necessary
to acquire fuze information by up to 89.95 percent, correspond-
ing to a speed up of 10.54. In all execution stages, it takes MPI
less than a second to perform the desired task, regardless of the
number of fuzes. In contrast, the Python implementation can take
up to ten seconds.

While the difference may seem marginal on the surface, every

CrossTalk—November/December 2015 15

FUSING IT & REAL-TIME TACTICAL

second counts on the battlefield. The current ADIM system has a
fire rate of 30 rounds per minute, or a round every two seconds.
Therefore, the reductions from 3.3 and 8.3 seconds to less than a
second correspond to possibly two to four more rounds directed
at the enemy. When a soldier is in contact with the enemy in a
firefight, two to four mortar rounds could be the difference be-
tween achieving the objective and failing to suppress the enemy.
In order for the ADIM to be useful, a soldier needs to know as
soon as possible that the changes were received and his equip-
ment is ready for use so he can continue to react to the ever
changing battlefield.

These results also indicate the superiority of using MPI to
achieve system scalability. MPI is a long-standing standard for a
reason. The experimental results clearly show that it is faster than
standard Python sockets for broadcasting and receiving messag-
es from many nodes. We encourage other developers designing
server-client systems to explore MPI as a potential library to im-
prove performance. Future work will explore other MPI operations,
such as collective and asynchronous communication constructs,
in a further effort to improve performance in the ROAMs system.

Notably, the current experimentation does not include the
amount of time needed to maintain the list of active fuze clients.
As each round is fired from the chamber, it becomes “inactive.”
When a new mortar is inserted into the chamber, the round
becomes “active.” In both cases, the magServer needs to know
about the change of status in individual rounds to maintain an
accurate list of the mortars available at any given time.

Message passing can assist in keeping the magServer updated
as follows. Every time a mortar is fired, it sends a message to the
magServer indicating that it is no longer active. The magServer,
upon receiving the message, will need to remove the mortar’s
IP address from the list of “available” IPs. When a new mortar
is added to the chamber, it sends a message to the magServer
notifying that the round is active. Upon receiving the message, the
magServer adds the new IP address to the list of “available” IPs.
Regardless of whether a new round is “acquired” or “disabled/
fired”, the cost is a single send/receive operation plus the time
needed to update the list.

The preliminary results suggest that the time needed to send/
receive a single message using MPI takes between 0.03 and
0.05 seconds, a trivial amount. Since ADIM’s capacity is twenty
rounds, it is hypothesized that the time needed to update the list
is negligible. A thorough simulation of mortars firing and being
reloaded is needed to fully test this hypothesis. We plan to make
this the focus of our future work.

Acknowledgments/Disclaimer
 We would like to thank the entire support staff at

USMA’s Electronic Support Group and Computer Support Group
for their hard work supplying us with hardware and troubleshoot-
ing software. We would especially like to thank Mr. Frank Black-
mon for assisting in the design of and 3D-printing the Raspberry
Pi’s cases, Mr. Bob McKay for designing, creating, and fixing the
Raspberry Pi’s power system, and Mr. Jim Beck for countless
hours spent troubleshooting the Raspberry Pi’s network and SSH
connections. The opinions expressed in this work are those of
the authors and do not reflect those of the U.S. Army or the U.S.
Military Academy.

Zachary Ramirez is a 2nd Lieutenant in the U.S.
Army, Transportation Corps. He graduated with his
B.S. in computer science from the United States
Military Academy in 2014. He completed the work
on this paper as part of an independent study
supervised by Dr. Matthews and MAJ Blaine. He
is currently stationed in the 916th Sustainment
Brigade at Ft. Irwin, CA. He was recently selected to
become part of the new Cyber Corps and will make
the transition in August 2016.

E-mail: zachary.j.ramirez3.mil@mail.mil

Raymond Blaine was commissioned a Signal Officer
and recently became a Cyber Officer. His assign-
ments include a variety of duty positions at Fort
Bragg, N. C. He also has served two tours in OIF and
one tour in OEF, as a Platoon Leader, Aide-de-Camp
to the Chief of Staff MNC-I, and as S6 for 2-508 PIR
respectively. He is an Assistant Professor at USMA.

E-mail: raymond.w.blaine.mil@mail.mil

Suzanne J. Matthews is an assistant professor of
computer science at the United States Military Acad-
emy, West Point. She received her Ph.D. in computer
science from Texas A&M University, and her M.S. and
B.S. in computer science from Rensselaer Poly-
technic Institute. Her honors include a Texas A&M
University Dissertation Fellowship, a Rensselaer
Master Teaching Fellowship, and memberships in the
Upsilon Pi Epsilon and Phi Kappi Phi honor societies.

E-mail: suzanne.matthews@usma.edu

ABOUT THE AUTHORS

REFERENCES

1. Kowal, Eric and Lopez, Ed. Revolutionary Mortar System to Boost Speed, Accuracy, Enhance
soldier Safety [Online]. Available: <http://www.army.mil/article/147037/Revolutionary_mor-
tar_system_to_boost_speed__accuracy__enhance_Soldier_safety/, 2015>.

2. Raspberry Pi Model B+ Data Sheet [Online]. Available: <https://www.adafruit.com/datasheets/
pi-specs.pdf >, 2014.

3. Gropp, William, Ewing Lusk, and Rajeev Thakur. Using MPI-2: Advanced features of the
message-passing interface. MIT press, 1999.

4. Beazley, David. Understanding the Python GIL [Online]. Available: <http://www.dabeaz.com/
python/UnderstandingGIL.pdf. 2010>.

5. How-To: Turn a Raspberry Pi into a WiFi Router [Online]. Available: <http://raspberrypihq.com/
how-to-turn-a-raspberry-pi-into-a-wifi-router/>

6. Cox, Simon . Steps to Make Raspberry Pi Supercomputer [Online]. Available: <http://www.
southampton.ac.uk/~sjc/raspberrypi/pi_supercomputer_southampton_web.pdf, 2013>

