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Abstract—Modern Wide Area Monitoring systems (WAMS)
incorporating Phasor Measurement Unit (PMU) technology are
producing big datasets. Historical analysis of PMU data is ben-
eficial in development of online WAMS applications, quantifying
baseline normal performance, and discovering anomalous events.
Energy and time-efficient computational techniques are beneficial
for historical analysis of PMU data. Application workflows that
include historical analysis typically combine higher-level (but
slow) languages like Python with faster (but older) languages
like C. This paper compares the performance of Numba Python
and C for historical analysis of PMU data, on both the CPU and
GPU. We augment a known PMU anomaly detection scheme with
linear state estimation, implement it separately in Numba and
C, test the approaches on two real-world datasets, and measure
their performance on the CPU and GPU of the NVIDIA Jetson
Xavier single board computer, varying the available power modes.
Results demonstrate that while Numba is significantly faster than
traditional Python, simplifies application development, and holds
promise for PMU applications, there is a noticeable performance
gap between Numba and C on the GPU.

Index Terms—Numba, CUDA, synchrophasor, smart grid,
historical analysis, GPU

I. INTRODUCTION

A wide variety of programming languages and computing
platforms are used for analysis of synchrophasor data. For
Wide Area Monitoring Systems (WAMS) applications, it is
not uncommon for SCADA designers to implement time-
sensitive components in compiled languages like C/C++, and
auxiliary functionality such as database querying, machine
learning, and data visualization in less performant (but feature-
rich) languages like Python [1]–[3]. While concise, readable,
and flexible enough to enable rapid development of smart
grid applications, Python’s interpreted nature typically makes
it a poor choice for applications that require rapid analysis
(e.g. historical analysis of synchrophasor data). Workflows
incorporating multiple languages are significantly harder to
maintain and secure; keeping a workflow entirely in one
language greatly simplifies application development.

A variety of methods are available to expedite historical
analysis of PMU data. Specifically, serial methods can be
parallelized on multicore CPUs or manycore GPUs to speed
up computation. Researchers have successfully applied parallel

techniques to implementations of Weighted Least Squares
(WLS) state estimation for improved performance [4]–[7].

Most GPU-based applications for the smart grid are imple-
mented using NVIDIA’s Compute Unified Device Architecture
(CUDA), which is arguably the most popular API used for
GPGPU applications, and typically implemented in C/C++
and Fortran. While C/C++ applications yield fast executables,
they are significantly more difficult to secure and program
than Python applications. In addition, CUDA is a notoriously
difficult language for even experienced developers to leverage.

Given Python’s critical role in many scientific computing
applications, researchers have explored creating Python bind-
ings for CUDA. The CuPy [8], [9] Python library allows
programmers to embed C/C++ CUDA kernels in their Python
code and launch the kernels using a provided API. While
this method results in kernel speeds that are comparable to
their C/C++ counterparts, programmers need to know enough
CUDA C/C++ to write the kernels themselves, preventing the
application from being written only in Python.

Numba Python [10] enables programmers to gain the ben-
efits of a compiler while programming in nearly pure Python.
Available as a Python library, Numba is a just-in-time compiler
that enables developers to add special decorators to their
Python applications to target specific sections of code for
compilation. Additionally, Numba is able to create compiled
code on the GPU, allowing developers a way to benefit from
Python’s features while also maintaining fast CPU/GPU code.
Prior work [11], [12] demonstrates that Numba performs
competitively to C in several classes of GPU applications.

In this paper, we evaluate Numba’s ability to perform his-
torical analysis of PMU data, by comparing it to traditional C
and C CUDA on computing Linear State Estimation (LSE) and
anomaly detection on synchrophasors. Software experiments
were conducted to investigate performance, prove workflow,
and identify strengths and limitations of each language.

PMUs increase measurement rates and enables measure-
ments to be synchronized across the system using a GPS
clock [13]. The time-aligned nature of the measurements they
produce (synchrophasors) allows for linear solutions to the
state estimation problem. While simplified, the required WLS



Fig. 1. Distributed PMU-based WAMS architecture

method is still is computationally intensive to benefit from
GPU analysis, as it requires linear algebra on complex voltages
and currents [14].

II. METHODS

PMUs perform real-time monitoring of power grids and
report data to a Phasor Data Concentrator (PDC) which
processes and archives PMU data for other applications (e.g.
historical analysis) as shown in Fig. 1. The LSE-anomaly
detection workflow presented in this work can be applied to
real-time WAMS [15] or historical analysis [16] of PMU data.
Specifically, the anomaly detection technique processes PMU
data for constraint violations and temporal anomalies, and
is applicable to any level of PMU deployment, as outlined
in [15]. LSE is applied to provide insight into PMU data
matching the system model and is useful in determining if
anomalous conditions are consistent with the system physics,
or an artifact of the monitoring system.

Unlike real-time applications, which involve the analysis
of smaller sets of PMU data with strict timing requirements,
historical analysis requires the processing of large datasets
with less strict timing requirements, though rapid analysis
is still desirable. Additionally, energy efficient computing
becomes ever more important as the quantity of PMU data, and
subsequent offline PMU data analysis, continues to increase.

Depending on the application, the use of Single Board
Computers (SBCs) can reduce the cost and power consumption
of analyses that are typically performed on larger machines.
For example, prior work [16], [17] has demonstrated the
feasibility of real-time and historical anomaly detection of
PMU data using decentralized SBCs at each PDC. Prior
work [16] demonstrates that a CUDA-based historical anomaly
detection approach running on the NVIDIA Jetson Nano SBC
can detect anomalies in less than a second on a dataset
containing 11.3 million PMU measurements. The feasibility
of SBCs for centralized historical analysis is dependent on
the required computational performance and dataset size.

For the approach in this paper, we augmented this prior
work with a parallel version of a LSE described in [18]. The
closed-form LSE solution for the WLS approach is:

x = (HTWH)−1HTWz (1)

where H is a matrix relating the states to measurements based
on the power system model, W is a covariance weighted
matrix based on measurement accuracy, z is a column matrix
of time-aligned PMU measurements (consisting of voltages
and current phasors), and x is the resulting column matrix of
estimated power systems states (voltage phasors).

A key thrust of our work is to validate the workflow on
a low-energy system, thus reducing the total energy required
for the auditing process. To this end, we chose the NVIDIA
Jetson Xavier NX [19], an SBC with a 6-core Carmel Arm
CPU, a 384-core Volta GPU, and 8 GB of unified memory, as
the platform of study. The NVIDIA Jetson Nano used in prior
work [16] had insufficient memory for the LSE process. Most
importantly, the Jetson Xavier NX features three optimized
power budgets that limit the power consumption of the SBC
to at most 20 Watts. In contrast, typical GPU cards alone
consume upwards of 100 Watts, making the Jetson Xavier
especially suitable for application spaces requiring a low-
power footprint. The Jetson Xavier NX also features custom
Tensor cores designed to accelerate deep learning applications
that use TensorFlow [20], a popular ML package with a native
Python API. These features make the Jetson Xavier NX a
compelling platform for PMU-based applications, which may
want to include machine learning as part of a larger workflow.

To this end, we explore two main research questions in
this work. First, (a) What benefit (if any) does Numba bring
to historical analysis of synchrophasor data?; and, (b) What
power budgets on the Jetson NX are recommended for histor-
ical analysis of sychrophasor data?.

A. Implementation Details

To explore question (a), we implement a LSE anomaly
detection workflow designed for historical analysis of syn-
chrophasor data for two power systems: a 7-bus and 57-
bus power system. The algorithm requires three steps: data
preparation, state estimation, and anomaly detection.

Data preparation is done entirely on the CPU, and involves
the creation of a large hashtable that collates the PMU data into
their respective measurement type (e.g, voltage magnitude,
current magnitude, etc.), which we refer to as measurands.
This hashtable is then transcribed into a static m× n matrix,
where m is the number of measurands, and n in the number of
measurements per measurand. This m×n matrix is transferred
to the GPU for linear state estimation and anomaly detection,
which are then run on the matrix as separate kernels. In
addition to the input matrix, the H , W , and z matrices required
for LSE are transferred to the GPU.

At a high level, the LSE kernel assigns t threads to each of
n/t blocks of the input matrix. Using a grid-stride loop [21],
each thread computes (1) on its assigned set of measurements.
To avoid race conditions and to ensure that there is a consistent
state of the system, the pre-populated z matrix is used only for
reading, while the resulting x matrix is only ever written to.
At the conclusion of the LSE step, a separate detection kernel
(described in [16]) is run on the data.



The entire LSE-anomaly detection workflow described
above was separately implemented in C CUDA and Numba
CUDA Python. All implementations use 32-bit floating point
data types to hold measurement and estimated values. Each im-
plementation required a custom LSE model that corresponded
to the associated power system architecture. Thus, the 7-bus
and 57-bus implementations have separate formulations of (1).
From a computational perspective, it is notable that 57-bus
workflow requires matrices that are an order of magnitude
larger than those for the 7-bus workflow.

To explore question (b), we experimentally identified three
power modes, out of the eight available on the Jetson Xavier
NX, which runs JetPack v. 5.02-b321. In all cases we picked
the mode that maximized CPU frequency as the data prepara-
tion step took a non-trivial amount of time. For the 10 Watt
budget, mode 5 was utilized, the default for the Jetson Xavier
NX. This power mode provides 4 online CPUs at 1900 MHz,
but limits GPU core frequency to 510 MHz. For the 15-
watt budget, mode 0 was selected, which provides 2 online
CPUs at 1900 MHz, but allows for a GPU Max Frequency
of 1100 MHz. Finally, for the 20-Watt budget, mode 6 was
selected, which also provides 2 online CPUs at 1900 MHz
and GPU Max Frequency of 1100 MHz. In this latter case,
the higher power utilization goes partially to an increase in
memory frequency, which increases to 1866 MHz from the
1600 MHz utilized on the smaller power budgets.

B. Datasets

We ran experiments on two sets of data. The first dataset is
real data derived from a 1000:1 scaled emulated smart grid test
bed [22] of a three-phase 46 kV subtransmission system with
7 buses, 9 transmission lines and 8 IEEE C37.118-compliant
PMUs that are GPS time synchronized with a reporting rate of
60 Hz. Each 1-second data frame consists of 82 measurements
(10 voltage magnitudes, 11 current magnitudes, 10 voltages
phases, 11 current phases, 8 frequencies, 8 rate of change of
frequencies, and 24 additional pieces of information). In the
context of LSE, 14 states are estimated (magnitude and phase
of each bus voltage).

The 7-bus dataset was collected over a period of 70 minutes,
containing ≈ 21 million measurements. During this time, the
system state was perturbed to generate anomalies. To test the
efficacy of our historical analysis approach we tested it over
the following collection periods:

• A 5-minute period (≈ 1 million measurements)
• A 15-minute period (≈ 6 million measurements)
• A 50-minute period (≈ 15 million measurements)
• A 70-minute period (≈ 21 million measurements)
The 57-bus dataset was synthesized in software to simulate

the IEEE standard 57-bus power system that is an approxima-
tion of American Electric Power system in the Midwestern
United States in the 1960s [23]. This system consists of
80 transmission lines and a PMU reporting rate of 60 Hz.
A true state of this system was obtained by performing
power flow; PMU data, with and without anomalies, was
subsequently synthesized by adding random measurement

Fig. 2. Serial Performance

error to the power flow result. Each 1-second data frame
consists of 388 measurements (57 voltage magnitudes, 80
current magnitudes, 57 voltage phases, 80 current phases, 57
frequencies, 57 rate of change frequencies). In the context
of LSE, 114 states are estimated (the magnitude and phase
for each bus voltage). Data was simulated to obtain similar
numbers of measurements as stated above, correspond to a
1-minute (1.5 million measurements), 4-minute (6 million
measurements), 10-minute (15 million measurements) and 14-
minute (21 million measurements) collection periods.

III. RESULTS

For a particular dataset (7-bus or 57-bus), we varied the
number of measurements (1 million, 6 million, 15 million or
21 million), and the implementation (Numba or CUDA). For
the parallel benchmarks, we also varied the power budget (10
watt, 15 watt or 20 watt), and the number of threads (t) per
block, which ranged from t = 32 . . . 768. Each instance was
run 5 times and results report the average time spent on the
LSE and anomaly detection component. Memory consumption
was also measured. The figures that follow depict the total time
required for the state estimation and anomaly detection steps.
Please note the hashtable building time is not included.

A. Serial Performance

For the 7-bus and 57-bus datasets, there was no appreciable
difference in serial performance across the three power modes.
For this reason, Fig. 2 shows the serial performance on the 7-
bus and 57-bus datasets for pure Python, Numba Python, and
C on the default 10W power envelope.

There is a significant performance difference between tra-
ditional “pure” Python and Numba Python. For example, the
LSE+anomaly detection process implemented in pure Python
takes 8.96 minutes on the 7-bus 21 million dataset, while
Numba Python takes only 7.026 seconds, a speedup of 76.52.
On the 57-bus dataset, the pure Python version takes 17.95
minutes to perform LSE+anomaly detection on 21 million
measurements. In contrast, the Numba Python version takes
only 25.111 seconds, a speedup of 42.88.

Consistent with prior work, the Numba Python serial im-
plementations perform competitively to their serial C coun-
terparts. For example, the C implementation took 5.718 sec-
onds to perform LSE+anomaly detection on the 21 million



Fig. 3. 7-bus Dataset GPU performance

measurements of the 7-bus dataset, roughly a one second
difference. The performance difference narrows further on
the 57-bus dataset, with the C version taking approximately
24.079 seconds, about a second faster than Numba. These re-
sults underscore Numba’s ability to close the performance gap
between serial Python applications and their C counterparts.

B. Parallel GPU performance

Any similarity in performance between Numba and C
disappear when the approaches are run on the GPU. Fig. 3
and Fig. 4 depict the GPU performance of the Numba CUDA
and C CUDA approaches on the 7-bus and 57-bus datasets
respectively. We were unable to identify a particular number
of threads that consistently produced the fastest runtime. As
such, we depict the fastest (darker bars) and slowest (stacked
lighter bars) observed parallel time on each power mode and
measurement file. For the 7-bus dataset, the fastest times were
consistently observed on the 15 W power envelope.

On the 7-bus datasets, it took Numba roughly 0.28 sec-
onds to perform the LSE+anomaly detection process on 1
million and 6 million measurements, corresponding to re-
spective speedups of 2.2 and 5.93 over the corresponding
serial implementations. Numba takes 0.927 seconds on the
15 million measurements dataset and 1.446 seconds on the
21 million measurement dataset, or 4.7 times faster than their
serial counterparts. In contrast, the C implementations are an
order of magnitude faster. On 1 million measurements, the
C implementation only takes 0.032 seconds to complete the
LSE+anomaly detection process, a speedup of 13.84. On 21
million measurements, the C implementation takes only 0.144
seconds, a speedup of 40.82.

The speed difference between Numba and C is magnified
on the 57-bus dataset. Unlike the 7-bus dataset, there was
no consistency on which power envelope produced the fastest
result. Therefore, in the discussion that follows, we refer only
to the fastest observed time for each file. On the larger 15
million and 21 million measurement files, it takes Numba
3.559 seconds and 7.093 seconds to execute the LSE+anomaly
detection process on the GPU, representing speedups of 5.04
and 3.54 over their serial counterparts respectively. In contrast,
the C implementations took only 0.633 seconds to analyze

Fig. 4. 57-bus Dataset GPU Performance

15 million measurements on the GPU, and 1.775 second
to process 21 million measurements, representing respective
speedups of 26.08 and 13.411 over the serial C counterparts.
We also note that the C implementations are up to 5.62 times
faster than their Numba counterparts on the 57-bus dataset.

Lastly, we note that the Python implementations use sig-
nificantly more memory than their C counterparts. On the 15
and 21 million measurement files of both datasets, the Python
implementations consume all the memory on the platform
(8GB plus swap), significantly slowing down the execution
of the Python implementations on these datasets. In contrast,
the C versions comfortably fit into memory, with the 21
million (15 million) dataset consuming approximately 6.03 GB
(5.29 GB) of memory. We believe this disparity in memory
consumption is one of main reasons why there is such a
significant performance difference between the Numba CUDA
and C CUDA implementations.

IV. DISCUSSION AND CONCLUSION

For RQ1, there is compelling evidence that developers
should look closer at Numba for speeding up serial ap-
plications of PMU data, especially those that heavily in-
volve numerical computing. Compared to traditional Python,
Numba’s benefits are obvious: the LSE+anomaly detection
process is infeasibly slow in traditional Python, but performs
competitively to C when using Numba.

There is evidence that Numba has the potential to accelerate
GPU compute tasks for PMU applications, allowing devel-
opers to create their applications completely in Python. The
LSE+anomaly detection process requires nearly 18 minutes
to analyze 21 million measurements in traditional Python;
Numba CUDA analyzes the same dataset in < 8 seconds.
While the equivalent CUDA C implementation is nearly 6
times faster than Numba, the 8 seconds needed for Numba
CUDA is sufficiently fast for historical analysis of PMU data.

However, Numba’s current limitations on optimizing certain
critical data types can limit any advantage that Numba-
based PMU applications may have over their C counterparts.
Critically, Numba currently has very limited support for the
Python dictionary data type, which is needed to build the initial



measurand hashtable prior to the LSE+anomaly detection pro-
cess; again, table building was not included in our performance
analysis above. Since this critical component had to be written
in traditional Python for our Numba implementations, the table
building process is an order of magnitude slower in the Numba
implementations (327 s on the 7-bus, 680 s on the 57-bus)
than their C counterparts (34 s on the 7-bus, 99 s on the
57-bus), eliminating any advantage that Numba may have for
this specific application. While multithreading libraries like
OpenMP can further reduce the table building preprocessing
step in C, Python does not currently support multithreading,
forcing this to remain a serial process for Python applications.

From a programming perspective, the serial and parallel
historical analysis approaches were easier to implement in
Numba Python than in C. However, optimization was signif-
icantly harder in Numba, as its abstractions made it difficult
to optimize targeted sections of code. Furthermore, Numba’s
ecosystem of profilers and debuggers is still relatively im-
mature; it is significantly more difficult to detect errors in a
Numba implementation than in C. We also note that most of
the observed performance differences in the GPU implementa-
tions in C and Numba had to do with the ability of the CUDA
C implementation to leverage the unified memory architecture
of the Jetson Xavier. The equivalent steps in Numba CUDA
resulted in slower code, and therefore was omitted.

For RQ2, we had predicted that the higher power en-
velopes would yield significantly better performance on the
NVIDIA Jetson NX. This assumption turned out to be false;
the performance difference between power envelopes was
negligible. Our results suggest that the 15W power envelope is
a good choice for SCADA developers to achieve consistently
good performance on the Jetson NX. Lastly, we believe the
NVIDIA Jetson Xavier NX is an exciting platform for WAMS
applications, and that adopting such power-efficient devices
reduce the total energy consumption of the auditing process,
making the process nearly “free” from an energy perspective,
compared to traditional servers.
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