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Abstract—The Fast Fourier Transform (FFT) is perhaps the
most consequential algorithm for real-time applications for digital
signals processing. Given the increased importance of securing
devices on the edge, memory safety becomes an increasing
concern for FFT applications. This work compares the perfor-
mance of four FFT implementations written in the C and the
Rust languages, benchmarked on the Raspberry Pi 4 and the
Raspberry Pi Zero W platforms. Our results suggest that FFTs
implemented in Rust are up to 45% more energy efficient than
those written in C, and that Rust FFT implementations execute
up to 37% faster than corresponding FFTs implemented in C.
These results suggest that real-time application designers should
take a closer look at the Rust language to enhance the safety and
performance of their FFT applications.

Index Terms—Edge computing, Rust, C, Fast Fourier Trans-
form, Raspberry Pi

I. INTRODUCTION

The Fast Fourier Transform (FFT) is one of the most
consequential algorithms of all time, and plays a critical role
in most digital signal processing applications. Due the broad
applicability of the FFT, much effort [1], [2] is made in the
software and hardware domains to improve the performance of
FFTs, and to pick the optimal FFT for a particular application.
Well-known FFT libraries such as FFTW aid application
writers by automatically selecting the “best” FFT to use based
on the input size, N , which is typically a power of 2.

In recent years, researchers have also sought to measure
and optimize the energy consumption of their FFT approaches,
especially in edge computing applications [3], [4]. In edge
computing, FFT approaches are typically used as part of a
larger analysis that occurs in real-time, which is achieved when
the time to analyze data (ta) is no more than the time required
to acquire the data (tin) [4]. Due to the potential sensitivity
of certain edge computing applications, security is becoming
an increasing concern in edge computing design [5], [6].

Applications designed for embedded devices at the edge
commonly use C or C++ [7], due to the compact and efficient
nature of produced executables. However, C is a notoriously
memory-unsafe language, making it easy to inadvertently
introduce vulnerabilities in applications [7]. In recent years,
Rust has emerged as a memory-safe programming language
that does not compromise execution speed [8]–[10]. As such,
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researchers have begun to include Rust when benchmarking
the relative performance of languages; recent work has sug-
gested that Rust achieves similar performance to C on many
classes of problems [11].

This paper compares the performance of Rust and C-based
implementations of the FFT on two separate Raspberry Pi plat-
forms. The Raspberry Pi is an extremely popular single-board
computer (SBC) used in edge and IoT applications involving
FFT, either directly or as a testbed [3], [12]–[15]. Our work
is novel for two reasons. First, we are the first to compare
the performance of C-based and Rust-based implementations
of the FFT. Second, we benchmark FFT performance on the
high-end Raspberry Pi 4B, and the Raspberry Pi Zero W, the
smallest and most energy-efficient of the Raspberry Pi SBCs.
To the best of our knowledge, no prior study of FFTs on
the Raspberry Pi have considered the Rust language or the
Raspberry Pi Zero W. To this end, our work seeks to answer
the following three research questions:

• RQ1: How performant are different FFT problem sizes
on the Raspberry Pi 4B vs the Raspberry Pi Zero W?

• RQ2: How well do Rust implementations of FFT compare
to C implementations of FFT?

• RQ3: What benefit (if any) is gained from implementing
a custom FFT over using pre-existing library methods?

The remainder of this paper is organized as follows.
Section II discusses related work. Section III describes our
methodology and experimental setup. Section IV discusses the
results, and we summarize our findings in Section V.

II. BACKGROUND & RELATED WORK

The Fast Fourier Transform (FFT) provides an O(N ×
logN) solution to the traditional O(N2) Discrete Fourier
Transform. Since the genesis of this new algorithm, there
has been a sustained, multi-pronged effort to achieve further
speed-up by analyzing the algorithm itself [2], the use of
additional hardware [16] with some specially made to optimize
the computation of the FFT [17], [18] and increasing the
energy efficiency of the FFT [19].

The Fastest Fast Fourier Transform in the West (FFTW)
is a highly optimized, widely-used FFT library that is con-
sidered the fastest publicly available FFT library. It uses the
characteristics of a particular machine’s compiler to select



the “best” FFT algorithm and implementation strategy (or
“plan”) for a particular problem size at runtime. Additionally,
it is largely autogenerated using genfft, which is written in
OCaml [2]. Significantly, it is the underlying FFT used by the
commercial Matlab software [20] and the open-source GNU
Octave suite [21].

FFTW is written in ANSI C, the most widely-used low-
level programming language in use today. Applications written
on the edge for embedded devices typically also use C or
C++ [7]. We note that C is a notoriously unsafe language,
lacking array bounds checking and is weakly-typed, making it
harder to secure programs written in the C language. However
C is still widely chosen for performant applications due to
the speed of its compiled executables. It is therefore perhaps
unsurprising that despite C’s inherent security flaws, it remains
a popular language for researchers utilizing the FFT.

More recently, the Rust Programming Language has gained
prominence as a “safer” alternative to C, providing enhanced
safety features such as efficient static information flow anal-
ysis and strong type checking, without compromising perfor-
mance [8]. Adoption of Rust is still relatively low, owing to
the relative newness of the language [9].

Rust cannot leverage FFTW as it lacks support for Single
Instruction, Multiple Data (SIMD) instructions required by
FFTW3 [22], [23]. As a result, Rust developers created the
rustfft crate [24] in pure Rust. Unlike FFTW, rustfft needs to
place the buffer in bit-reversed order. Like FFTW, the rustfft
crate includes a planner that automatically chooses the best
algorithm for a particular buffer and N size.

Recent work has suggested that Rust is capable of out-
performing C in certain classes of applications. Pereira et.
al [11], [25] ranked 27 programming languages by energy
efficiency over 10 problem types; Rust emerged as the most
energy efficient language in three, and performed similarly
to C in the rest. Sitepu [26] compared the performance of
a Rust and C implementation of the QUIC protocol in the
cloud environment. In this application space, the C implemen-
tation outperformed the Rust implementation. Noureddine [27]
compared the performance of three implementations of a
Ray-casting algorithm in C, Python and Java on Raspberry
Pi and Intel systems. It was discovered that C and Python
outperformed Java on all three systems. Notably, Rust was not
included in the set of languages under analysis. Georgiou et.
al [28] compared Rust and C (among other language) imple-
mentations of common sorting algorithms on an Intel machine
and a Raspberry Pi 3B; it was concluded that C was more
energy-efficient than Rust. We note that this paper is several
years old, and that Rust has undergone several optimizations
in the intervening years. Furthermore, the performance of Rust
and C on FFT implementations was not considered in any of
the aforementioned benchmarks.

This paper specifically focuses on comparing the perfor-
mance of FFT implementations in the C and Rust languages
on Raspberry Pi platforms. The Raspberry Pi is an extremely
popular single-board computer (SBC) used for embedded ap-
plications on the edge [3], [13]–[15]. As such, there have been

several papers comparing FFT performance on the Raspberry
Pi. He et. al [14] benchmarked the run-time of six FFT
approaches on the Raspberry Pi 3B and the Raspberry Pi 2B+
implemented in C and Python. The FFTW implementations
were the fastest serial implementations, though the authors
note that parallel methods utilizing the GPU work best at
higher N values [14]. Faerman et. al [15] looked at the
efficacy of the Raspberry Pi 3B+ and Raspberry Pi 4B for the
real-time processing of acoustic signals using different FFT
algorithms, all implemented in C++. CPU FFT computation
was performed using FFTW; the researchers concluded that for
N < 218, both the CPU and GPU FFT implementations were
capable of real-time performance. For larger N -sizes, GPU
methods were preferable. Abtahi et. al [29] used the Raspberry
Pi 3B to compare the performance of a number of FFT-based
convolutional techniques on the Arm Cotex A53 processor
(which is the processor used on the Raspberry Pi 3B). Notably,
the researchers use GNU Octave for implementing their FFTs,
which commonly uses FFTW under the hood.

Our work is novel for several reasons. To the best of our
knowledge, we are the first to compare Rust and C imple-
mentations of the FFT on Raspberry Pi platforms. Second,
we are also the first to include the Raspberry Pi Zero in our
benchmarks. The Raspberry Pi Zero is the smallest Raspberry
Pi, with 512MB of RAM and a 1 GHz ARM11 processor,
consuming under a 2 watts of power under peak loads. The
Raspberry Pi Zero W is the option of the Raspberry Pi Zero
that has wireless connectivity; it has an identical processor to
the Raspberry Pi Zero. The smaller processor of the Raspberry
Pi Zero means that computations necessarily take longer than
on other Raspberry Pi SBC models such as the Raspberry Pi
4B, the most recent model of the Raspberry Pi SBC. Unlike
the Raspberry Pi Zero, the Raspberry Pi 4B consumes up
to 6.4 Watts under peak loads, and boasts a more powerful
1.5 GHz A72 processor and 1 or more GB of RAM.

Lastly, our paper is one of the first to use the recently
released PowerJoular [27] monitoring software for monitoring
the energy consumption of our specific FFT processes. Pow-
erJoular supports a variety of Raspberry Pi models, as well
as PCs and servers using a RAPL supported Intel or AMD
processor or an NVIDIA graphic card [30]. Unlike many other
tools, PowerJoular is able to monitor the energy consumption
of individual processes, allowing for more accurate energy
estimates of specific programs.

III. METHODS

The two specific Raspberry Pi platforms being investigated
in this study are the Raspberry Pi Zero W Rev 1.1 (RPi ZW)
and the Raspberry Pi 4B Rev 1.5 (RPi 4B) with 2 GB of
RAM. The RPi ZW draws about 0.86 watts of power at idle
and 1.75 watts under load. By contrast the Raspberry Pi 4B
draws 2.4 watts at idle and 6.4 watts when under load [31].

Four implementations of the FFT were benchmarked over
the RPi 4B and RPi ZW platforms. The first two FFT
programs (fftw and rustfft_crate) are implemented
using the standard FFTW (version 3.3.10) and rustfft (version



Fig. 1: Radix-2 8-point DIT FFT Butterfly Diagram

6.1.0) libraries in C and Rust, respectively. The last two
implementations (custom_cfft and custom_rustfft)
are hand-implemented versions of the Radix-2 FFT algorithm
(see Section III-A for more details) in C and Rust. For each
implementation and platform, we measure the execution time,
energy consumption, and the CPU and memory utilization.

All implementations were compiled using their respective
languages optimization flags (-O3 for C and --release for
Rust) and were tested on N values ranging from 25 to 222.
Additional work was required to create Rust binaries on the
smaller RPi ZW, which cannot natively build Rust binaries.
Instead, we use the Rust Cross-RS cross-compilation tool-
chain [32], maintained by the Rust Embedded Working Group
Tools team, to build a 32-bit armv6 executable capable of
running on the RPi ZW. Across the surveyed literature, an
N > 20 was considered to be a large FFT requiring a lot of
computational work; the largest N-value observed for a serial
FFT implementation was N = 222 [14].

The input buffers are complex numbers, all having zero for
their imaginary component at the beginning of execution. FFT
execution time was measured using the clock function in the
time.h header file in C, and the Instant function in the
std::time module in Rust. Each N -value and implementa-
tion combination were run 5 times, and the average execution
time is reported. Valgrind’s massif tool was used to measure
the peak memory utilized each program’s execution.

A. Fast Fourier Transform - Custom Implementations

Both the FFTW and the rustfft libraries are capable of
selecting a different FFT algorithm based on the nature of
the input and a particular N -value. For simplicity, we chose
to implement the Radix-2 algorithm for our custom FFT
implementations (see Fig. 1). Prior work [4] suggests that
the Radix-2 algorithm has a faster execution time than other
approaches, though it may not be the most energy efficient for
all N -values. The custom implementations are implemented
identically in C and Rust, and use an iterative butterfly method.

Each custom implementation includes separate functions to
bit reverse the input and generate the twiddle factors for each

Fig. 2: Energy Consumption on Raspberry Pi 4B vs Raspberry
Pi Zero W

stage of the Radix-2 algorithm. When computing a given stage
of the FFT, computed values are placed on a stack to preserve
the buffer and then overwrite their respective values once
computation for that section is complete. The implementations
were made to compute complex-to-complex FFTs.

B. PowerJoular

PowerJoular was used to measure the energy consumption
and CPU utilization of all implementations on the RPi 4B
and RPi ZW. On Raspberry Pi models, PowerJoular uses
custom-built polynomial regression models to make its power
estimates [27]. PowerJoular is supported as-is on the RPi ZW
and RPi 4B running a 32-bit OS [33]; however, a one-line
change was made to Power Joular’s os_utils.adb file to
recognize the the latest revision number of the RPi 4B’s 32-bit
OS. We consulted with PowerJoular’s author about the validity
of this change, who confirmed that there should be no impact
on accuracy.

Using the best practices laid out in prior work [27], each
program computed the FFT on the given input data 30 times
to gain a more accurate representation of the amount of power
required to compute a single iteration of the FFT. After gaining
the total energy over 30 iterations, that value was then divided
by 30 to represent the amount of energy required for one FFT
iteration. PowerJoular’s -f flag was used to measure the CPU
utilization of each implementation on a particular N-value.

IV. RESULTS AND DISCUSSION

Fig. 2 shows the energy consumption ratio of the RPi 4B to
the RPi ZW for each FFT implementation. A ratio greater than
1 at a particular N value indicates that the RPi ZW is a more
energy-efficient platform for computing the FFT for that N . A
ratio below 1 indicates when the RPi 4B is the more energy
efficient platform. When the ratio is equal to 1, there is no
difference in energy consumption between the two platforms.
Our data suggests that N = 213 represents an inflection point
at which the RPi 4B becomes a more energy-efficient platform



Fig. 3: Energy Consumption of C vs Rust

for FFT computation. We note that at N = 213, the RPi ZW’s
CPU utilization hits 100% across all approaches, and remains
at 100% across all approaches for all higher N values. In
contrast, the RPi 4B’s CPU utilization never reaches 100%,
suggesting its processor is never fully under load. Our results
suggest that for all but the highest N sizes, the smaller RPi ZW
is a better option from a purely energy perspective, consuming
roughly 1.85 times less energy at N values of less than 211.

Fig. 3 shows the energy consumption ratio of each C lan-
guage FFT implementation to the corresponding Rust language
implementation on each platform. A ratio greater than 1 at
a particular N indicates that the Rust language was more
energy efficient at computing the FFT than the corresponding
C language implementation for that N . A ratio less than
1 indicates that the C language implementation was more
energy-efficient, while a ratio of 1 indicates no difference in
energy efficiency. Regardless of whether a custom FFT or a
library-selected FFT was employed, our results suggest that
the Rust implementations are either typically equally or more
energy-efficient than the C implementations on the Raspberry
Pi platforms, with the Rust library implementations up to 45%
more energy-efficiency at higher N values on the RPi 4B, and
41% more energy efficient on the RPi ZW.

For real-time applications, executions speed is often tanta-
mount. Fig. 5a and Fig. 5b depict the execution time of each
FFT approach on the RPi ZW and the RPi 4B respectively.
Unsurprisingly, FFT approaches take significantly longer on
to execute on the weaker RPi ZW, executing up to 10.5 times
slower than on the RPi 4B. Interestingly however, on virtually
all N sizes, the rustfft_crate implementation had the
fastest execution time, regardless of platform, executing up to
37% faster than the C implementations at the highest N values.
These results suggest that the standard rustfft library is a better
choice for implementing FFT approaches on the Raspberry Pi.

Table I shows the raw execution times of our different FFT
approaches in seconds. We provide this table in hopes that it
helps others determine if a particular platform is suitable for

Fig. 4: Memory Consumption of C vs Rust

their analyses. For example, a sensor operating at a frequency
of 60 HZ would report data every 16.67 ms. For problem sizes
where N < 211, our data shows that a real-time computation
of the FFT is possible on the RPi ZW, while consuming
less energy than a similar computation on the RPi 4B. In
contrast, for larger problem sizes between 211 and 213, real-
time computation of the FFT is feasible only on the RPi 4B.

Lastly, we compared the peak memory consumption of the
Rust and C language implementations on our separate plat-
forms. The maximum amount of memory utilized by any of the
methods was 176 MiB, which is far below the memory capac-
ity of both the RPi ZW and the RPi 4B. Each implementation
used the same amount of memory whether run on the RPi 4B
or RPi ZW; as such, only the memory usage on the RPi 4B is
reported. Unsurprisingly, the custom versions of the algorithms
consumed less overall memory than their library counterparts.
Fig. 4 depicts the ratio of the measured memory consumption
of each C language FFT implementation to the corresponding
Rust language implementation. A ratio greater than 1 indicates
that the Rust language implementation consumes less memory
than the corresponding C implementaton, while a ratio of 1
indicates no difference. For all but the smallest N values, the
Rust implementations was more memory-efficient than the C
implementations, regardless of whether a custom FFT or a
library-selected FFT was used. Most interestingly, 212 became
an inflection point at which both the custom_rustfft
and the rustfft_crate implementations utilized roughly
equal amounts of memory, consuming approximately 1.75 and
1.33 times less memory than the custom_cfft and fftw
implementations respectively. Our results strongly support
the notion that Rust implementations of the FFT are more
memory-efficient than the C versions.

V. CONCLUSION

The Fast Fourier Transform plays a critical role in digital
signals processing applications, with much work being done
to improve the performance and energy consumption of the
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Fig. 5: FFT execution time on Raspberry Pi platforms

TABLE I: Total Execution Time (s)

N FFTW3 custom cfft rustfft crate custom rustfft
RPi 4B RPi ZW RPi 4B RPi ZW RPi 4B RPi ZW RPi 4B RPi ZW

5 0.0018 0.0075 0.0009 0.0031 0.0007 0.0018 0.0013 0.0035
6 0.0019 0.0056 0.0007 0.0027 0.0007 0.0016 0.0012 0.0025
7 0.0018 0.0062 0.0007 0.0034 0.0004 0.0021 0.001 0.0031
8 0.0016 0.0074 0.001 0.0048 0.0004 0.003 0.0009 0.0045
9 0.0016 0.0098 0.0015 0.0079 0.0006 0.005 0.0011 0.011

10 0.0023 0.0149 0.0023 0.0143 0.001 0.0084 0.0017 0.0158
11 0.0038 0.0243 0.0029 0.0275 0.0017 0.0161 0.0028 0.0207
12 0.0049 0.0441 0.0054 0.0538 0.0033 0.0323 0.0049 0.0408
13 0.0084 0.0865 0.0111 0.1098 0.0063 0.0624 0.0092 0.0822
14 0.0165 0.1666 0.0222 0.2209 0.0125 0.1269 0.0183 0.1723
15 0.0315 0.3315 0.0456 0.4716 0.0248 0.2611 0.0362 0.3599
16 0.064 0.6522 0.0948 0.9671 0.0496 0.5303 0.0737 1.0458
17 0.1503 1.3344 0.2031 1.9678 0.1021 1.0873 0.1602 1.5139
18 0.3097 2.667 0.4022 4.0993 0.2074 2.3514 0.3399 3.1034
19 0.5429 5.3709 0.8418 8.3462 0.4203 4.2411 0.6983 6.5872
20 1.0918 10.6836 1.6767 17.1514 0.8555 8.1077 1.4401 13.5054
21 2.3252 21.6724 3.5584 35.6269 1.7617 15.5024 2.9386 27.182
22 4.7176 45.7268 7.1744 73.88 3.4193 34.6656 6.0205 57.6972

underlying implementations. This paper compares the perfor-
mance of Rust and C implementations of FFT implementations
on the Raspberry Pi 4B and Raspberry Pi Zero W platforms,
a popular class of SBCs for edge and IoT applications. We
compare the implementations across language and platform,
measuring the run time, energy consumption, memory con-
sumption, and CPU utilization of our different approaches.

Our work explored three research questions. In regards to
RQ1, our results suggest that on problem sizes less than
N = 211, the Raspberry Pi Zero W is a more energy-
efficient platform. One of the novelties of our work compared
to prior work is that we include the Raspberry Pi Zero
W in our benchmarking; these results suggest that perhaps
scientists should take a closer look at the Raspberry Pi Zero
(W) for FFT applications, especially for problem sizes less
than N = 211. In regards to RQ2, our results strongly

suggest that Rust-based FFT implementations are typically
more energy-efficient, memory-efficient, and run faster than
their C counterparts, suggesting that scientists should seriously
explore the Rust language for their FFT needs. For RQ3,
hand-written FFT implementations may be more useful if it
is necessary to optimize for memory; unless someone writes
a highly-optimized hand-written FFT for a particular N -size
however, using a library implementation will typically yield
as good (or better) performance.

We believe that our results are significant and important to
the scientific community, as it supports the notion that, at least
for the FFT applications on SBCs like the Raspberry Pi, scien-
tists should consider porting C-based FFT applications to the
Rust language. While Rust’s single-ownership memory model
makes it much more challenging language to approach than
C [7], [8], we believe that the increased memory protections



that Rust offers, coupled with its fast execution and low energy
consumption, makes the Rust language difficult to ignore for
FFT applications. Future work will concentrate on evaluating
the performance of larger real-time applications implemented
in Rust and to C, especially those that leverage the FFT.
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