
A Comparative Study of Programming Languages
for a Real-Time Smart Grid Application

Michael P. Rooney Jr.
Department of EE & CS

U.S. Military Academy
West Point, NY, USA

michael.rooney@westpoint.edu

Nakul Rao
Department of EE & CS

U.S. Military Academy
West Point, NY, USA

nakul.rao@westpoint.edu

Nicholas Liebers
Department of EE & CS

U.S. Military Academy
West Point, NY, USA

nicholas.e.liebers.mil@army.mil

Aaron St. Leger
Department of EE & CS

U.S. Military Academy
West Point, NY, USA

aaron.stleger@westpoint.edu

Suzanne J. Matthews
Department of EE & CS

U.S. Military Academy
West Point, NY, USA

suzanne.matthews@westpoint.edu

Abstract—With security an increasing concern, SCADA system
designers should consider the programming language used to
implement critical smart grid applications. In this paper, we
compare the performance of an anomaly detection workflow
implemented in a common programming language used in
SCADA systems (C) to equivalent implementations in three less
commonly-known languages (Numba Python, Cython, and Rust).
We benchmark our implementations on two real-world datasets
of synchrophasor data and compare their performance on two
Arm-based single board computers. Our results demonstrate that
the Numba Python implementations achieve real-time perfor-
mance in many contexts that pure Python counterparts cannot. In
all tested scenarios, the Rust implementations achieve real-time
performance while consuming similar amounts of power to their
C counterparts. Our results suggest that SCADA designers should
take a closer look at Numba Python and Rust for performant
WAMS applications.

Index Terms—Wide Area Monitoring System, Synchrophasor,
Linear State Estimation, Anomaly Detection, Rust, C, Numba,
Raspberry Pi, Single Board Computer

I. INTRODUCTION

Security is becoming an increasing concern in smart grid
design. Cyber-attacks have already had real world impacts on
power grids. For example, three provinces in Ukraine were
remotely attacked resulting in a six-hour loss of power for
225,000 people [1]. Russian military groups have targeted the
Ukraininan power grid via cyber-attacks on multiple occasions
with varying levels of success [2].

As Supervisory Control and Data Acquisition (SCADA)
designers consider how best to protect the grid, we posit that
they carefully consider the language in which they implement
their applications. For real-time applications, such as Wide
Area Monitoring Systems (WAMS), it is not uncommon for
designers to use performant compiled languages such as C and
C++. However, these languages are notoriously difficult to pro-

Supported by the Department of Defense

gram safely, making it easy for even experienced developers to
inadvertently introduce vulnerabilities to their applications [3].

Another consideration when picking a language is its sup-
port of auxiliary libraries that facilitate the larger application
workflow. For example, a SCADA application may want to
query a SQL database, perform machine learning, or visualize
data. Such tasks are exponentially more difficult and require
significantly more code in older languages like C, compared
to a more modern language like Python. However, Python
is slower than its traditional compiled counterparts, and is
typically inappropriate for real-time applications.

In this paper, we explore two research questions. First, what
language(s) should SCADA designers consider when imple-
menting real-time applications for the smart grid? Second,
what advantage (if any) do smaller single board computers
such as the Raspberry Pi Zero provide in a real-time context?

We compare the performance of a Linear State Estimation
(LSE) real-time anomaly detection workflow that is imple-
mented in four different languages: C, Rust, Numba Python,
and Cython. We run our algorithms on real data derived from
a 1000 : 1 emulated smart grid testbed, and synthesized
data, and compare their performance on two Arm-based single
board computers to emulate how they would run in a real-
world scenario.

Our results show that the Numba Python and Cython
implementations execute the LSE anomaly detection workflow
in real time on the Raspberry Pi 4B, a feat that is not possible
with pure Python. In almost all cases, Numba is also faster than
Cython. The Numba implementations are not capable of real-
time detection on the more resource-constrained Raspberry Pi
2 Zero W; in contrast, the Rust implementations achieve real-
time performance on all datasets and platforms tested. These
results strongly suggest that SCADA developers should take
a closer look at Rust and Numba when designing their own
smart grid applications, especially for WAMS.

II. BACKGROUND & RELATED WORK

A. Languages under study

Due to the inherent speed of their resulting executables,
C and C++ are extremely popular languages employed in
smart grid applications (e.g., [4]–[6]). However, C is a difficult
language to code safely; the lack of array bounds-checking and
the need to manually manage memory make C applications a
popular target for exploitation. It is also more difficult in C
to integrate external libraries and maintain portability without
greatly expanding the size of the underlying code base.

Modern languages like Python provide greater flexibility
for SCADA developers. Unlike C, Python includes native
protection against most types of memory errors. Python’s
readability and conciseness make it a popular language for
rapid development, especially for the smart grid (see [7]–[9]
for examples). The diversity of the Python Package Index
(PyPI) enables SCADA developers to quickly “glue” together
applications with functionality like querying databases, per-
forming machine learning, and visualizing data. However,
as an interpreted language, Python is inherently slower than
traditional compiled counterparts, making it unsuitable for
many real-time applications.

One solution is to use a language like Cython, a hybrid
Python/C language that essentially compiles Python code
down to C [10]. Cython differs from Python in a few key
ways. First, to improve performance, programmers typically
must manually type variables in the code. Additionally, when
working with NumPy arrays (which are crucial for any Python
application dealing with multidimensional arrays), there are
extra steps required to ensure efficient array access. Most
projects utilizing Cython are therefore written in a mixture of
Python and Cython, with the latter used to speed up targeted
sections of code [10], [11].

The Numba [11] just-in-time compiler for Python has re-
cently emerged as a promising alternative to Cython. Available
as a Python library, Numba allows users to target specific
parts of a Python program for Numba compilation by using
the @jit decorator, enabling a developer to code in nearly
pure Python. Unlike Cython, Numba does not require manual
typing to be added to Python code, and the library works
seamlessly with NumPy. A key disadvantage of Numba is that
it allows optimization only on a subset of the Python language.

We also evaluate Rust, a relatively new memory-safe pro-
gramming language. Rust’s single-ownership model enables
it to ensure memory safety at compile time. Proponents of
Rust describe it as a secure language with Python-like syntax
and fast, C-like execution [12]–[14]. Recent studies [15],
[16] suggest that Rust achieves similar performance to C on
many classes of problems. While adoption of Rust is still
relatively low (owing to the newness of the language) [13],
some researchers [17], [18] have started implementing smart
grid applications in Rust. A key novelty of our work is that
we are the first to compare the performance of Rust to other
languages for a smart grid application, and to implement an
anomaly detection algorithm in Rust.

B. Case Study: Anomaly Detection with LSE

State Estimation (SE) is a key part of monitoring electrical
power grids that estimates the present state (voltage amplitudes
and phase angles) [19], [20]. SE algorithms estimate the “true”
value of the power system states based on measurements
acquired over an interval of time, and a mathematical model
of the system [21]. Traditional SCADA measurements up-
date at a slow pace of 3 to 5 seconds and are not time-
synchronized [22], resulting in the use of iterative solvers.
The most common method is to estimate states by minimizing
the error between measurements and the power system model
through a weighted least squares (WLS) algorithm. The dif-
ficulties associated with traditional SCADA systems coupled
with the computational complexity of iterative solvers makes
obtaining meaningful real-time results challenging [23].

Phasor Measurement Units (PMUs) are a significant ad-
vancement compared to traditional SCADA measurements.
PMUs report data at up to 120 Hz, time-synchronizes data to a
high-precision GPS clock enabling direct phase measurement,
and timestamps the measurements so they can be time aligned
for SCADA applications. High-fidelity synchronized measure-
ments (synchrophasors) enable a linear solution (LSE) to the
state estimation problem, reducing the number of calculations
and ensuring a more accurate estimate [24], [25].

For our case study, we augmented an existing anomaly
detection approach [6] for synchrophasor data with LSE. Prior
work [6] has shown the feasibility of performing real-time
anomaly detection on synchrophasor data using the Raspberry
Pi 3 single board computer, and demonstrated that a single
Raspberry Pi could analyze data from up to 50 PMUs in real-
time [6]. A key observation of prior work is that the Raspberry
Pi was barely taxed for the simple anomaly detection approach.
By adding LSE prior to the anomaly detection step, we
significantly increase the computational complexity of the
detection task, as LSE approaches require linear algebra on
complex voltages and currents. [26]. Additionally, the fusion
of LSE with anomaly detection on PMU data provides insight
into the nature of the anomaly. For example, if the detected
anomaly is consistent with the LSE result, then it is indicative
of a physical anomalous condition in the power grid.

A recent paper [27] explored the feasibility of LSE on the
Raspberry Pi. However, the authors only created a prototype
of LSE using standard Python, and did not incorporate it into
a larger anomaly detection workflow. Our work optimizes and
extends the work in [27], incorporating LSE into an anomaly
detection workflow, and expands the set of languages and
Raspberry Pi platforms used for benchmarking.

C. Platforms Under Study

The Raspberry Pi is increasingly being explored [6], [27]–
[30] for smart grid applications, either as a proposed compo-
nent of the grid or as a testbed for other Arm-based hardware.
The two Raspberry Pi platforms under study are the Raspberry
Pi 4B and the Raspberry Pi 2 Zero W. The Raspberry Pi 4B
is the latest model of Raspberry Pi, with a 64-bit 2.4 GHz
Arm A72 processor and options of 1 GB, 2 GB, 4 GB and

8 GB of RAM. The 4B draws 2.4 watts of power at idle and
6.4 watts under load. The version we tested had 2 GB of
RAM, and retails for $45.00. The Raspberry Pi Zero 2W is
a more power-efficient offering with a modest 1 GHz 64-bit
Arm Cortex-A53 CPU and only 512 MB of RAM. It draws
about 0.7 watts of power at idle and approximately 3 watts
under load. The Raspberry Pi 2 Zero W retails for $15.00.

III. METHODS

A. Overview of the LSE Anomaly Detection Workflow

The objective of the previously developed [6] anomaly
detection algorithm is to detect anomalous conditions within
raw PMU data. The approach looks at constraint anomalies
in raw PMU data (anomalies are flagged when data exceeds
expected range of values) and temporal anomalies by an-
alyzing a time window of raw PMU data (anomalies are
flagged when a predefined coefficient of variation is exceeded
within a window). The LSE estimates power system states
by minimizing the error between PMU measurements and the
model of the power system. The closed form LSE solution
using a WLS approach is (see [27] for details):

x = (HTWH)−1HTWz (1)

where x is a column matrix of estimated power system
states (voltage phasors), z is a column matrix of time aligned
PMU measurements (voltage and current phasors), W is a co-
variance weighting matrix based on measurement accuracy,
and H is a matrix relating the states to the measurements
based on the power system model.

The fusion of anomaly detection and LSE for WAMS
in a distributed environment has several advantages over a
centralized approach. WAMS must process data and report
results quickly, ideally in real-time. However, communicating
large amounts of PMU data has significant communication
network requirements [27]. Fig. 1 illustrates how single board
computers distributed throughout the power grid perform
anomaly detection and state estimation. Information flows
from the PMUs to a Phasor Data Concentrator (PDC) on
its LAN, which extracts PMU data from network packets,
time aligns the data, and locally archives the data or serves
it to remote applications. In the proposed scenario, the PDC
serves data to a Raspberry Pi that performs anomaly de-
tection and LSE, only communicating meaningful results to
the control center when needed. This distributed architecture
shows promise [6] in obtaining real-time performance and
minimizing communication requirements in WAMS.

B. Datasets Description

Benchmarking is performed on two sets of data, one from a
7-bus power system and another from a 57-bus power system.
Both sets are representative of real-world power systems and
provide benchmarks of varying scale. The 7-bus system data
was obtained from a 1000 : 1 scaled emulated Smart Grid
Test-Bed developed at the U.S. Military Academy [31]. The
power system emulated in the testbed is based on a 7-bus,
46kV, three-phase subtransmission system containing nine

Fig. 1: Distributed architecture of state estimation and anomaly
detection with PMU data

transmission lines and eight IEEE C37.118-compliant PMUs
time synchronized to GPS satellite clocks. The PMUs sample
data at 60 Hz, have 82 measurements (10 voltage magnitudes,
10 voltage phases, 11 current magnitudes, 11 current phases, 8
frequencies, 8 rate of change of frequencies, and 24 additional
pieces of data corresponding to analog, digital, and PMU
status), an anomaly detection window size of 1 second, and 14
states estimated (magnitude and phase of each bus voltage).

Data for the 57-bus power system was synthesized in
software. The system model is based on the IEEE standard 57-
bus power system which is a simplified approximation of the
American Electric Power system in the Midwest United States
from the 1960s [32]. The system contains 80 transmission
lines. A true state of the 57-bus system was obtained from
performing power flow on the system. PMU data was subse-
quently synthesized by modeling random measurement error
on top of the power flow result. The 57-bus system synthesized
data at 60 Hz, has 388 measurements (57 voltage magnitudes,
57 voltage phases, 80 current magnitudes, 80 current phases,
57 frequencies, 57 rate of change of frequencies), an anomaly
detection window size of 1 second, and 114 states estimated
(magnitude and phase of each bus voltage).

Each dataset had two sets of generated data. The first was a
“clean” set of data. For the 7-bus system this was obtained by
operating the the testbed under normal operating conditions.
For the 57-bus system, this data was obtained by adding ran-
dom measurement error within specification of measurements
to true values. The second set of data was an “anomalous” set
of data. For the 7-bus system this was obtained by operating
the tested and perturbing the system to deviate voltages
and currents from normal operating conditions. For the 57-
bus system the anomalous dataset was obtained by adding
random measurement error as before; however, a subset of the
measurement error exceeded the specification of measurements
to create anomalous conditions.

The 7-bus anomalous dataset consisted of 1.4 million mea-
surements collected over a five minute period, corresponding
to 37, 475 anomalous events, including 28, 515 constraint
anomalies and 1, 473 temporal anomalies. The 57-bus anoma-
lous dataset consists of 1.5 million measurements simulating

TABLE I: Average Detection Time Per Window (ms)

Data C Rust Numba Cython
RPi 4B RPi 2ZW RPi 4B RPi 2ZW RPi 4B RPi 2ZW RPi 4B RPi 2ZW

7-bus (clean) 0.139 0.465 0.191 0.712 0.528 1.818 0.589 1.908
7-bus (anomalous) 0.152 0.509 0.225 1.152 0.557 2.513 0.643 2.383

57-bus (clean) 2.20 6.849 3.104 15.42 5.724 15.71 6.7016 16.03
57-bus (anomalous) 3.05 9.64 3.308 16.28 6.702 41.86 7.454 18.32

a collection over an approximately one minute period, corre-
sponding to 63, 340 anomalous events, including 45 constraint
anomalies and 63, 295 temporal anomalies. We verified the
correctness of each implementation by ensuring that their
outputs matched and that they detected all the anomalous
events introduced into the testbed.

C. Experimental Methodology

The original LSE anomaly detection workflow was proto-
typed in pure Python; equivalent implementations were created
in Numba Python, Cython, C, and Rust. Each implemen-
tation’s LSE algorithm requires a unique formulation for
solving (1) that corresponds to the associated power system
architecture. Notably, the matrices required for the 57-bus LSE
workflow are an order of magnitude larger than those required
for the 7-bus.

To simulate a real-time stream, each dataset file is loaded
into memory. On each window of data, LSE is first performed,
followed by anomaly detection. For consistency, all three
versions are compiled using LLVM, the default compiler
for Rust and Numba Python. The C implementations were
compiled with the Clang frontend for LLVM. For optimal
performance, the Rust and C executables were compiled with
the -O3 flag, and Rust was compiled using its -release
mode. Numba Python was compiled using nopython mode,
which does not access Python’s C API and is recommended
for yielding the most performance [33].

For each simulation, platform, and respective datasets, we
measure the execution time, power consumption, and the
CPU and memory utilization. Valgrind’s massif tool is used
to measure the peak memory used during each simulation’s
execution. We use a Kill-A-Watt to measure the at-wall peak
power consumption (in watts). We report the average execu-
tion time required to complete the LSE anomaly detection
workflow in a single window.

IV. RESULTS AND DISCUSSION

A. Execution Time Per Window

Table I depicts the average time it takes each implementa-
tion to perform the LSE anomaly detection workflow on a sin-
gle window of data. Each window contains 82 measurements
for the 7-bus implementations, and 388 measurements in the
57-bus implementations. Since the reporting rate of the system
is 60 Hz, the applications must complete the LSE anomaly
detection workflow in under 16.67 ms on each window of
data to meet the definition of real-time.

Fig. 2: Distribution of execution on Raspberry Pi 2 Zero W
on 57-bus anomalous dataset without printing

On the more powerful Raspberry Pi 4B, all the implemen-
tations easily met the standard of real-time, regardless of the
language used, or whether the dataset contained anomalies.
Unsurprisingly, the C implementation was the fastest, averag-
ing less than 0.152 ms on the 7-bus datasets and less than
3.05 ms on the 57-bus datasets. Rust, while slower, is not
appreciably different. We note that while the Numba and
Cython implementations were up to 4 times slower than the
C versions, both these implementations were able to execute
well under the definition of real-time on the 57-bus anomalous
dataset, at 6.702 and 7.454 ms respectively. A pure Python
implementation is not capable of real-time performance, taking
an average of 64.532 ms to analyze a window for anomalies
on the 57-bus anomalous dataset on the Raspberry Pi 4B.
The use of Numba speeds up the Python code by an order
of magnitude, enabling real-time performance on this device.

All implementations take longer to run on the more
resource-constrained Raspberry Pi 2 Zero W. On the datasets
with no anomalies, all implementations meet the definition of
real-time. However, C and Rust are the only implementations
that meet the definition of real-time on the anomalous 57-bus
dataset, analyzing a window for anomalies in 9.64 ms and
16.28 ms, respectively. In contrast, the Numba and Cython
implementations fall outside the definition of real-time, taking
41.86 ms and 18.32 ms respectively.

Table I includes the (oftentimes significant) overhead of
printing detected anomalies to screen. To determine how I/O
affects average execution time, we reran our 57-bus imple-
mentations on the anomalous dataset with printing turned off.
Fig. 2 depicts the distribution of the detection times for these

runs on the 57-bus anomalous dataset on the Raspberry Pi 2
Zero W. While all implementations now meet the definition
of real-time, we note that the Numba and Cython Python im-
plementations have long distribution tails, with some windows
taking nearly 100 ms for detection in Numba. We confirmed
that these outliers contain anomalies; Cython and Numba
simply take longer on such windows. In contrast, the C and
Rust implementations had very tight distributions, suggesting
more consistent peformance.

B. Power Consumption

Fig. 3 shows the peak power consumption measured at wall
for each implementation. The C and Rust implementations
consumed similar amounts of power, with the 57-bus dataset
consuming slightly more power on the Raspberry Pi 2 Zero W
than the 4B on the 7-bus datasets. The Python implementations
have a greater discrepancy in power consumption. The 57-bus
Python implementations consume 40%-48% more power than
their 7-bus counterparts, suggesting that these implementations
are stressing the platforms more significantly than the Rust
and C implementations. This observation is in line with prior
work [15], [16], [34] that conclude that interpreted languages
consume more energy than traditional compiled languages.

C. Memory and CPU Utilization

The Python implementations also consume more memory
than the equivalent C and Rust implementations. On the 7-
bus dataset, the C and Rust implementations consume less
than 1 MiB of memory, while the Python implementations
consume 28 to 37 MiB of memory. For the larger 57-bus
implementations, the C and Rust versions respectively con-
sume 3.4 MiB and 5.2 MiB of memory, while the Numba
and Cython versions take between 30.10 and 41.21 MiB of
memory. Numba and Cython compile only sections of the
Python code; the rest is still interpreted at run-time, leading
to necessarily larger memory consumption.

During all benchmarks, the Raspberry Pi 2 Zero W
ran consistently at 100% CPU utilization. In contrast,
the Raspberry Pi 4B ran at around 25% CPU utilization,
suggesting that the latter has room for additional tasks.

Our results suggest several things. First, while the Numba
and Cython implementations are slower than the C versions,
they are capable of completing the anomaly detection work-
flow in real-time on the Raspberry Pi 4B while executing an
order of magnitude faster than their pure Python counterparts.
Given the high interoperability the Python language provides,
an argument can be made that that SCADA designers should
take a closer look at Numba to greatly enhance the speed
of their Python-based applications. In nearly all cases, the
Numba Python implementations are faster than their Cython
counterparts. Our results demonstrate that with the use of the
Numba, it is possible to create real-time anomaly detection
workflows using Python.

We note that Numba cannot speed up all aspects of a
Python program. On more resource-constrained systems like

Fig. 3: Power consumption (in watts) at wall for each platform
and dataset

the Raspberry Pi 2 Zero, Numba takes a long time to execute,
especially on windows containing anomalous data. In contrast,
Rust is capable of real-time performance on all platforms
and datasets tested, while providing inherent memory-safety
and fast execution. While a younger language, Rust has an
emerging ecosystem of auxiliary packages, including bindings
for popular libraries like TensorFlow and OpenCV.

V. CONCLUSION

This paper compares the performance of four languages
on a WAMS smart grid application. We implemented four
identical anomaly detection approaches that utilized linear
state estimation, and benchmarked them on two sets of syn-
chrophasor data. One set was obtained from a smart grid
testbed and a second was synthesized from a power system
and measurement model. We also compared the performance
of each implementation on two models of Raspberry Pi, a
popular single board computer that is increasingly used in
the smart grid. We sought to answer two research questions:
first, what languages should SCADA designers consider when
implementing real-time applications for the smart grid (RQ1)?
Second, what advantage (if any) do smaller single board
computers such as the Raspberry Pi Zero provide in a real-
time context (RQ2)?

With regards to RQ1, we recommend that SCADA devel-
opers take a closer look at the Numba and Rust languages.
While Rust is slower than C, its ability to achieve real-
time performance while guaranteeing memory safety makes
it a very attractive alternative to C, especially in smart grid
applications. Our results demonstrate that with Numba, Python
applications are capable of real-time performance, especially
when run on the Raspberry Pi 4B.

For RQ2, our results suggest that SCADA designers should
consider deploying WAMS anomaly detection algorithms on
the Raspberry Pi Zero 2 W, if the goal is to complete the
process while consuming the least amount of power. Both the
Rust and C languages consume less than 2.5 Watts of power
on the Raspberry Pi 2 Zero W and are capable of detecting
anomalies in real time. However, if the goal is to run the

anomaly detection process in the context of a larger workflow
(involving steps such as machine learning) on the same device,
the Raspberry Pi 4B offers more flexibility, consumes only
moderately more power, and allows for the use of Python.
We note that all the implementations, regardless of language
or dataset, cause the Raspberry Pi4B run at around 25% CPU
utilization. In a smart grid architecture that incorporates single
board computers, our results demonstrate that the anomaly
detection process can be completed for nearly “free”, both
in terms of power consumption and expense of hardware.

VI. ACKNOWLEDGEMENT

Funding for this work is provided by the Department of
Defense. The views expressed in this article are those of the
authors and do not reflect the official policy or position of the
Department of the Army, Department of Defense or the U.S.
Government.

REFERENCES

[1] D. E. Whitehead, K. Owens, D. Gammel, and J. Smith, “Ukraine cyber-
induced power outage: Analysis and practical mitigation strategies,” in
2017 70th Annual conference for protective relay engineers (CPRE).
IEEE, 2017, pp. 1–8.

[2] (2022, APR.) Ukrainian power grid ’lucky’ to with-
stand russian cyber-attack. BBC. [Online]. Available:
https://www.bbc.com/news/technology-61085480

[3] M. Noseda, F. Frei, A. Rüst, and S. Künzli, “Rust for secure iot
applications: why c is getting rusty,” in Embedded World Conference
2022, Nuremberg, 21-23 June 2022. WEKA, 2022.

[4] R. C. Qiu, Z. Chen, N. Guo, Y. Song, P. Zhang, H. Li, and L. Lai,
“Towards a real-time cognitive radio network testbed: Architecture,
hardware platform, and application to smart grid,” in 2010 Fifth IEEE
Workshop on Networking Technologies for Software Defined Radio
Networks (SDR), 2010, pp. 1–6.

[5] B. K. Bose, “Artificial intelligence techniques in smart grid and renew-
able energy systems—some example applications,” Proceedings of the
IEEE, vol. 105, no. 11, pp. 2262–2273, 2017.

[6] S. J. Matthews and A. St. Leger, “Leveraging single board computers for
anomaly detection in the smart grid,” in 2017 IEEE 8th Annual Ubiq-
uitous Computing, Electronics and Mobile Communication Conference
(UEMCON), Oct 2017, pp. 437–443.

[7] S. Schütte, S. Scherfke, and M. Tröschel, “Mosaik: A framework for
modular simulation of active components in smart grids,” in 2011 IEEE
First International Workshop on Smart Grid Modeling and Simulation
(SGMS), 2011, pp. 55–60.

[8] K. Anderson, J. Du, A. Narayan, and A. E. Gamal, “Gridspice: A
distributed simulation platform for the smart grid,” IEEE Transactions
on Industrial Informatics, vol. 10, no. 4, pp. 2354–2363, 2014.

[9] L. Thurner, A. Scheidler, F. Schäfer, J.-H. Menke, J. Dollichon, F. Meier,
S. Meinecke, and M. Braun, “Pandapower—an open-source python tool
for convenient modeling, analysis, and optimization of electric power
systems,” IEEE Transactions on Power Systems, vol. 33, no. 6, pp. 6510–
6521, 2018.

[10] S. Behnel, R. Bradshaw, C. Citro, L. Dalcin, D. S. Seljebotn, and
K. Smith, “Cython: The best of both worlds,” Computing in Science
& Engineering, vol. 13, no. 2, pp. 31–39, 2011.

[11] S. K. Lam, A. Pitrou, and S. Seibert, “Numba: A llvm-based python
jit compiler,” in Proceedings of the Second Workshop on the LLVM
Compiler Infrastructure in HPC, ser. LLVM ’15. New York, NY, USA:
Association for Computing Machinery, 2015.

[12] A. Balasubramanian, M. S. Baranowski, A. Burtsev, A. Panda, Z. Raka-
marić, and L. Ryzhyk, “System programming in rust: Beyond safety,” in
Proceedings of the 16th Workshop on Hot Topics in Operating Systems,
2017, pp. 156–161.

[13] K. R. Fulton, A. Chan, D. Votipka, M. Hicks, and M. L. Mazurek,
“Benefits and drawbacks of adopting a secure programming language:
rust as a case study,” in Symposium on Usable Privacy and Security,
2021.

[14] M. Emre, R. Schroeder, K. Dewey, and B. Hardekopf, “Translating c to
safer rust,” Proceedings of the ACM on Programming Languages, vol. 5,
no. OOPSLA, pp. 1–29, 2021.

[15] R. Pereira, M. Couto, F. Ribeiro, R. Rua, J. Cunha, J. a. P. Fernandes, and
J. a. Saraiva, “Energy efficiency across programming languages: How
do energy, time, and memory relate?” in Proceedings of the 10th ACM
SIGPLAN International Conference on Software Language Engineering,
ser. SLE 2017. New York, NY, USA: Association for Computing
Machinery, 2017, p. 256–267.

[16] R. Pereira, M. Couto, F. Ribeiro, R. Rua, J. Cunha, J. P. Fernandes,
and J. Saraiva, “Ranking programming languages by energy efficiency,”
Science of Computer Programming, vol. 205, p. 102609, 2021.

[17] K. Hutto, S. Paul, B. Newberg, V. Boyapati, Y. Vunnam, S. Grijalva, and
V. Mooney, “Puf-based two-factor authentication protocol for securing
the power grid against insider threat,” in 2022 IEEE Kansas Power and
Energy Conference (KPEC), 2022, pp. 1–6.

[18] J. Keller, S. Paul, S. Grijalva, and V. J. Mooney, “Experimental setup
for grid control device software updates in supply chain cyber-security,”
in 2022 North American Power Symposium (NAPS), 2022, pp. 1–6.

[19] Y.-F. Huang, S. Werner, J. Huang, N. Kashyap, and V. Gupta, “State
Estimation in Electric Power Grids: Meeting New Challenges Presented
by the Requirements of the Future Grid,” IEEE Signal Processing
Magazine, vol. 29, no. 5, pp. 33–43, Sep. 2012.

[20] Y. Xia, Y. Chen, Z. Ren, S. Huang, M. Wang, and M. Lin, “State
estimation for large-scale power systems based on hybrid CPU-GPU
platform,” in 2017 IEEE Conference on Energy Internet and Energy
System Integration (EI2), Nov. 2017, pp. 1–6.

[21] A. Jovicic, M. Jereminov, L. Pileggi, and G. Hug, “A linear formulation
for power system state estimation including rtu and pmu measurements,”
in 2019 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-
Europe), 2019, pp. 1–5.

[22] G. A. Ortiz, D. G. Colomé, and J. J. Quispe Puma, “State estimation
of power system based on SCADA and PMU measurements,” in 2016
IEEE ANDESCON, Oct. 2016, pp. 1–4.

[23] H. Karimipour and V. Dinavahi, “Accelerated parallel WLS state esti-
mation for large-scale power systems on GPU,” in 2013 North American
Power Symposium (NAPS), Sep. 2013, pp. 1–6.

[24] K. D. Jones, J. S. Thorp, and R. M. Gardner, “Three-phase linear state
estimation using Phasor Measurements,” in 2013 IEEE Power & Energy
Society General Meeting, Jul. 2013, pp. 1–5.

[25] S. Soni, S. Bhil, D. Mehta, and S. Wagh, “Linear state estimation
model using phasor measurement unit (PMU) technology,” in 2012 9th
International Conference on Electrical Engineering, Computing Science
and Automatic Control (CCE), Sep. 2012, pp. 1–6.

[26] A. S. Dobakhshari, S. Azizi, M. Paolone, and V. Terzija, “Ultra Fast
Linear State Estimation Utilizing SCADA Measurements,” IEEE Trans-
actions on Power Systems, vol. 34, no. 4, pp. 2622–2631, Jul. 2019.

[27] S. D. Hassak, A. St. Leger, H. Oh, and D. F. Opila, “Implementing a
pmu based linear state estimator on a single board computer,” in 2022
North American Power Symposium (NAPS), 2022, pp. 1–6.

[28] A. M. Damle and M. Kulkarni, “A low-cost embedded platform for
synchronised wide area frequency measurement,” in 2014 Eighteenth
National Power Systems Conference (NPSC), 2014, pp. 1–6.

[29] P. Castello, C. Muscas, P. Attilio Pegoraro, and S. Sulis, “Low-cost
implementation of an active phasor data concentrator for smart grid,” in
2018 Workshop on Metrology for Industry 4.0 and IoT, 2018, pp. 78–82.

[30] I. Sittón-Candanedo, R. S. Alonso, O. Garcı̀a, L. Muñoz, and
S. Rodrı́guez-Gonzàlez, “Edge computing, iot and social computing in
smart energy scenarios,” Sensors, vol. 19, no. 15, 2019.

[31] A. St. Leger, J. Spruce, T. Banwell, and M. Collins, “Smart grid testbed
for wide-area monitoring and control systems,” in 2016 IEEE/PES
Transmission and Distribution Conference and Exposition (T&D), 2016,
pp. 1–5.

[32] IEEE 57-bus system. Illinois Center for a Smarter Electric Grid
(ICSEG). [Online]. Available: https://icseg.iti.illinois.edu/ieee-57-bus-
system/

[33] Numba Documentation, “Compiling python code with @jit,”
https://numba.readthedocs.io/en/stable/user/jit.html, accessed: 2023-05.

[34] S. Georgiou, M. Kechagia, and D. Spinellis, “Analyzing programming
languages’ energy consumption: An empirical study,” in Proceedings of
the 21st Pan-Hellenic Conference on Informatics, ser. PCI 2017. New
York, NY, USA: Association for Computing Machinery, 2017.

