Interactive textbooks for parallel and distributed
computing across the undergraduate CS curriculum

Richard Brown
St. Olaf College
rab@stolaf.edu

Elizabeth Shoop
Macalester College
shoop@macalester.edu

Abstract—It has been a decade since the ACM/IEEE CS2013
Curriculum guidelines recommended that all CS students learn
about parallel and distributed computing (PDC). But few text-
books for “core” CS courses—especially first-year courses—include
coverage of PDC topics. To fill this gap, we have written
free, online, beginner- and intermediate-level PDC textbooks,
containing interactive C/C++ OpenMP, MPI, mpidpy, CUDA,
and OpenACC code examples that students can run and modify
directly in the browser. The books address a serious challenge
to teaching PDC concepts, namely, easy access to the powerful
hardware needed for observing patterns and scalability. This
paper describes the content of these textbooks and the underlying
infrastructure that make them possible. We believe the described
textbooks fill a critical gap in PDC education and will be very
useful for the community.

Index Terms—C, C++, computing, education, interactive, MPI,
OpenACC, OpenMP, parallel, software, textbook

I. INTRODUCTION

Teaching parallel and distributed computing (PDC) is an
increasing requirement in undergraduate computing curricula.
Beyond the ubiquity of multicore processors in everyday
computers, students interact with computer systems employing
distributed communication patterns on a daily basis. Recog-
nizing the need for PDC in the undergraduate curriculum, the
ACM/IEEE CS Curricula 2013 guidelines added PDC to the
CS body of knowledge [1], and the Accreditation Board for
Engineering and Technology (ABET) has required all ABET-
accredited CS program graduates to learn about PDC since
2019 [2].

One curricular strategy for exposing all undergraduate CS
students to PDC is to incorporate PDC topics throughout the
CS curriculum [3], an approach that we might describe as
PDC early and often. Rather than expose CS majors to PDC
via a single required third or fourth year course—by which time
sequential thinking is a difficult-to-break habit-the PDC early
and often approach includes at least a week of PDC coverage
in each of the “core” CS courses that all majors take. By
consistently exposing students to PDC topics in each “core”
CS course, this approach lets students experience the broad
applicability of PDC across the discipline of computing.

Unfortunately, few “core” CS course textbooks incorporate
any PDC topics, especially first-year course texts. Instructors
wishing to add PDC coverage to such courses have had to

Funded in part by the National Science Foundation and the Department of
Defense

United States Military Academy
suzanne.matthews @ westpoint.edu

Joel C. Adams
Calvin University
adams@calvin.edu

Suzanne J. Matthews

develop their own supplemental PDC materials, or coordinate
access to PDC resources. While large scale resources such
as the NSF-funded ACCESS program make it possible for
instructors to coordinate access, the process is often too time-
consuming to justify its use for a one week PDC unit in a core
CS course.

To alleviate this problem, we have developed free, online,
interactive PDC textbooks that allow readers to learn about and
run PDC code on any web browser. The texts are interactive,
allowing readers to “tinker” with the PDC code examples:
students can run the provided code and view the results,
modify the code and then re-run it to see the effects of
their modifications, and so on. The books also include other
interactive elements, such as videos and “guess and check”
questions, to help readers gauge their understanding.

Currently, two texts are available on our learnpdc.org site:

e PDC for Beginners, for first- or second-year courses, and

e Intermediate PDC, for more advanced courses.

Each book may be used as the course text for a standalone
PDC course, or as a supplemental text for a CS “core” course.
To support the latter use case, each book is organized into
platform-specific sections that can be used as in-class activities
or as assigned readings. These textbooks currently contain C
and C++ code examples with sections devoted to the OpenMP
(shared-memory), MPI (distributed-memory), CUDA (GPU),
and OpenACC (GPU) parallel platforms, and Python examples
for MPI. There is an example for Python multiprocessing
in the PDC for Beginners book, but the code example is
static. All code examples provided in the books are available
for download from our GitHub repository [4]. Note that C
and C++ are compiled languages. Our inclusion of interactive
compiled-language code examples for PDC distinguish our
books from other interactive texts that only support interpreted
languages or single-core execution. Our implementation of the
front- and back-end infrastructure needed to support compiled-
language interactivity for PDC is a key contribution of this
work.

The rest of this paper provides a detailed examination of
these books. In Section II, we discuss work related to this
project. In Section III, we describe the contents of the two
books. In Section IV, we describe the underlying infrastructure
we created to realize our goal of compiled-language interactive
execution. In Section V, we present our future plans and
concluding remarks.

https://www.learnpdc.org/PDCBeginners2e/index.html
https://www.learnpdc.org/IntermediatePDC/

II. RELATED WORK

There are platforms that allow students to learn both
compiled and interpreted languages through interactive code
examples. Here, we survey some that have been used for
teaching high performance computing (HPC) and PDC.

Originally designed for Python coding, a Jupyter Note-
book [5] is an open-source system that has a front-end
browser-based “notebook” document editor connected to a
back-end server that can execute blocks of code within the
document. The documents that students use, which can contain
textual explanations along with code blocks, are portable and
can be shared. A Jupyter Notebook App that enables such
code execution can be installed locally or can be installed
on a server. Glick and Mache [6] described the use of these
notebooks for teaching HPC to undergraduates. They used an
extension called NBGrader [7] that enabled them to create
assignments by labeling portions of documents as problems,
where code solutions are hidden from students until they
complete them. The authors created several notebooks with
PDC platform extensions to a server at their institution, and
successfully used the notebooks to teach their HPC course.

Google has created a free hosted Jupyter Notebook service
called Collaboratory, or Colab [8], which improves the ease
of use of Jupyter-like notebooks as it eliminates the need to
set up a service for running various types of code examples.
While the basic Google Colab service has limited computing
resources available, due to a primary focus on Python pro-
gramming and A.L, it does enable users to access a GPU.
Xu recently reported success in using Colab in an upper level
PDC course for teaching CUDA [9].

Runestone [10] is an open source platform for creating
interactive web-based textbooks. The interactivity comes in
the form of traditional kinds of problems, such as multiple
choice and fill-in-the blank, but also newer kinds specific
to computer science, such as Parsons problems and Active
Code block examples that readers can edit and run, with
output displayed below the code. Among other languages, the
Runestone system enables basic C and C++ code examples to
be compiled with gcc/g++ and run on a remote open-source
server called Jobe (job engine) [11]. Jobe has a RESTful API
interface and executes given code on demand, with timeouts
and other configurable limitations.

Runestone is designed to enable authors to write books of
their own in reStructuredText!, to enable researchers to extend
the code base, and to serve up books on their own servers. We
took advantage of these capabilities to build our own version
of the Runestone server from a fork of the original code base
from early 2023, and we created our own version of the Jobe
service that enables us to compile and execute C, C++, and
Python code for PDC examples using popular PDC libraries on
a multicore server with GPU hardware that we maintain. Using
our revised version of Runestone, we have thus far authored
two PDC textbooks.

IThe newest version of Runestone is transitioning from reStructuredText to
preText, but we started this work before that transition.

III. ABOUT THE BOOKS
A. PDC for Beginners

PDC for Beginners is a free, interactive, on-line textbook
designed to teach early computing students the basics of
parallel and distributed computing. The book assumes that
readers have only a CS1 foundation in Python and/or C.
In addition to text and code blocks, it uses short video
segments featuring visualizations and analogies to introduce
PDC concepts to students. Unlike a traditional textbook, PDC
for Beginners’ chapters can be used in a piecemeal fashion to
“inject” parallelism into different early CS courses.

Each chapter follows a “crawl”, “walk”, “run” approach.
First, unplugged activities and analogies are used to introduce
PDC beginners to some concept at a high level (the “crawl”
phase). Figure 1 shows one such analogy (the “pizza eating”
analogy) for introducing students to processing elements (PEs,

or “pizza eaters” in our analogy).

Simple Parallel Pizza-Eating Algorithm
(performed by each person)

1. Define N: How many slices of pizza? N:

2. Define P: How many people? p:

3. Compute slices per person (N/P). slicesPP:

4. Get your own personal, unique id number (0..P-1). id: @E
5. Assign each slice of pizza a unique number (0..N-1).

6. Compute your starting slice number (id * slicesPP). start: \II
7. Compute your stopping slice number (start + slicesPP). stop: \I|
8. For (s = start; s < stop; ++s):

Eat slicess.

s (slice #s eaten): @El

Fig. 1. A Sample Analogy

Once the reader understands a high-level concept, we then
present one or more simple code examples, first in the form
of small code examples called patternlets [12], which demon-
strate the essence of a particular parallel pattern, followed
by other approachable examples (the “walk” phase). Lastly,
we present a larger, more complex example that shows how
the concept can be applied in a real-world context (the“run”
phase). These examples are all interactive, allowing the reader
to run and/or modify the code and view the results in their
browser. In Figure 2, the green ’*Save and Run’ button com-
piles, links, and executes the OpenMP C code on a multicore
server; that server returns the results, which are then displayed
dynamically below the code example.

Runestone also allows such interactive examples to be
paired with brief assessments; this allows the reader to check
their understanding, as can be seen in the lower portion of
Figure 2.

To run interactive examples in MPI, we created a custom
Runestone Active Code block that allows the reader to specify
the flags passed to the mpirun command. Figure 3 shows
a screenshot of an interactive MPI example that uses this
feature: Readers may run this example and control the number
of MPI processes by directly modifying the argument passed
to mpirun via the —np flag.

Consider the following serial program. What is its output?

r n'

Original - 1 of 1 Download
#include <stdio.h> // printf()
#include <omp.h> // QpenMP

int main(int argc, char®* argv) {
printf("\nBefore...\n");

/7 #pragma omp parallel
printf("\nDuring...");

printf("\n\nAfter...\n\n");

return 0;

Activity: 1 Serial Fork-Join (sm_fork_join)

\ J

The above code simply prints out the strings Before, During and After in order.

Now uncommentthe omp parallel pragma on line 8 and re-run the program.

r a

Q-2: What happens when you re-run the example?

A. Nothing happens. It's the same output.
B. The three strings "Before™, "During” and “"After’" are printed multiple times.
C. The string ""During™ is printed multiple times.

D. The strings “"During’” and " After’* are each printed multiple times.

Check Me

Activity: 2 Multiple Choice (sm_mc fork 1)

Fig. 2. An Interactive Code Example and Assessment

Organization: The PDC for Beginners book is organized
into the following chapters:

0. PDC Introduction
Provides foundations of PDC concepts, including
types of hardware, how we think about and measure
performance, and what types of programming strate-
gies we use. Purely text and figures and agnostic
of any particular software library, this represents a
"crawl’ chapter that students can refer back to when
trying examples in further chapters.

1. Shared Memory Programming with OpenMP
Provides C and C++ examples, starting with sim-
ple patternlet programs [12] (crawl), then classic
examples such as trapezoidal rule integration using
the reduction pattern (walk), and ending with a
simplified drug design program (run).

2. Message Passing using Python
Contains examples written in Python for mpidpy,
starting with simple example demonstrating classic
PDC message passing patterns (crawl), then what can
go wrong and slightly more complex examples with
exercises (walk), and finally showing an example of
simulations of a forest fire (run).

Original - 1 of 1 Download

from mpidpy import MPI

def main():
comm = MPI.COMM_WORLD
id = comm.Get_rank() #number of the process running the code
numProcesses = comm.Get_size() #ﬁtutal number of processes running
myHostName = MPI.Get_processor_name() #machine name running the code

REPS = 8

if ((REPS % numProcesses) == @ and numProcesses <= REPS):
How much of the loop should a process work on?
chunkSize = int(REPS / numProcesses)
tart = id * chunkSize 4

Flags for mpimr4 ['-np 41

Activity: 1 ActiveCode (02parallelLoopEqualChunks.py)

Run this code and envision that this is how the loop of 8 repetitions is being split by 4 processes:

Process 0 Process 1 Process 2 Process 3
—t— —— —
Iteration 0 1 2 3 4 5 6 7

Exercises:

1. Compare source the code to the output from running it.

2. Run, using these numbers of processes, -np: 1, 2, 4, and 8

3. Change REPS to 16, save, rerun, varying -np again.

4. Explain how this pattern divides the iterations of the loop among the processes.

Fig. 3. An Interactive Code Example with MPI

3. Common algorithmic patterns
Highlights two contributions: 1) how parallel selec-
tion works in both OpenMP and MPI, and 2) an
example using the shared queue of Python multipro-
cessing.

4. GPU Computing Basics with CUDA C
Provides the crawl/walk approach to the CUDA GPU
programming model, including small code examples,
then uses two versions of a vector addition example
to let students run.

5. A Deeper Dive into CUDA
Extends from the previous basics chapter to show the
effects of block size choices, how to time code, and
measuring performance.

6. Applications
Here we have 2 larger applications with detailed
descriptions, implemented in more than one PDC
library so the types of platforms can be compared:
1) the Al Minimax algorithm in serial, OpenMP and
MPI, and 2) matrix multiplication in serial, OpenMP
and CUDA.

Guest Authors: To provide different perspectives, we invited
additional authors to contribute sections to PDC for Beginners
on common algorithmic patterns and applications. Contribut-
ing authors were asked to follow the same crawl, walk,
run approach in their sections of the book, though in more
condensed form. Three additional authors contributed to the

PDC for Beginners text, writing sections on the Shared Queue
data structure, Parallel Selection, and a parallelization of the
Minimax algorithm, commonly used for Al applications. All
submissions were reviewed and edited before being included
in the book.

Use Cases: Unlike a traditional textbook, we do not antic-
ipate that this book be adopted in full in a particular core CS
course. Rather, we imagine that individual chapters or sections
be used as required reading or used for in-class activities in
different early CS courses. For elective or upper-level courses
focusing more heavily on PDC, content in this introductory
book can be used to introduce PDC concepts before moving
on to the Intermediate PDC book described below.

Here are some suggested scenarios for using the PDC for
Beginners text:

e Most students should find chapter 0 useful as background
reading to introduce PDC concepts. In particular, sec-
tions 0.3 and 0.4 describe PDC concepts using analogies
instead of code and provides a conceptual basis for the
code examples in subsequent chapters.

o Students in CS1, CS2 or Systems who have some famil-
iarity with a C-family language should be able to actively
try Chapter 1 in a class period.

« Any students at any level who can read Python should be
able to actively work through the examples in Chapter 2.
In that chapter we also suggest how the sections can be
split over class or lab periods.

o Upper-level courses that cover message passing may also
choose to adopt content from chapter 2 because the
Python examples are fairly straightforward.

o An algorithms course may want to delve into a subset of
the sections in Chapter 3 in their course after assigning
some of the background reading from Chapter 0. Also,
the application in Chapter 6, section 1 described below
might be of interest.

o Chapters 4 and 5 (CUDA programming on GPUs) are
likely applicable to students who have some experience
with C or C++. Chapter 4 is designed to be able to be
attempted in a 1.5 hour lab. Chapter 5 carries on from
Chapter 4 if you want to spend more time getting into
a few more details of CUDA programming. We have
used these in both systems courses and as a lead-in to
OpenACC in an advanced course.

e In 6.1, the Al minimax algorithm is described, along
with parallel implementations in OpenMP, so the shared
memory from chapter 1 is necessary background. Chapter
2 on MPI is background for the MPI example presented
here.

e In 6.2, the matrix multiplication application implementa-
tions in OpenMP and CUDA could be follow-on activities
after either Chapter 1 or 4.

B. Intermediate PDC

Whether trying to introduce parallelism early in the un-
dergraduate CS curriculum or not, many departments still
choose to offer an upper-level undergraduate course focusing

on PDC and/or high performance computing (HPC). For such
courses, we have developed a second textbook. However, it is
also possible to use portions of the book in other upper-level
courses that are not focused on PDC.

Since this book is meant for more advanced students, we
modify the approach for introducing material. As in PDC
for Beginners, Intermediate PDC begins with an overview
of common patterns in parallel programming, grounded by
past research [13], [14]. Through the chapters, we emphasize
what patterns are used when introducing the active examples.
The chapters start with more of a “walk” focus, though with
plenty of examples, since advanced students should have the
background to comprehend them. Next, students progress to
the “run” phase with more complex examples and suggested
projects.

Organization: This book’s current chapters are described
below. This book is in active development, and we plan to
add more chapters in the future (see Future Work section).

1. PDC Patterns
Parallel patterns are organized into a diagram and
broken down and described, in the context of both
shared memory with OpenMP and message passing
with MPIL.

2. Shared Memory Patterns with OpenMP
Provides active examples of most low-level pat-
terns described for shared memory systems, using C
OpenMP code. Also shows how each code example
fits into the patterns diagram from chapter 1.

3. Random Number Generators for PDC
Presents short examples using a parallel-safe pseudo
random number generator (PRNG) library that guar-
antees uniform distribution and reproducible results
regardless of number of PEs used. Includes diagrams
showing two common approaches.

4. Message Passing Parallel Patterns
Provides active examples of some low-level patterns
described for distributed systems, using C MPI code.
As in Chapter 2, shows how the examples match with
the patterns diagram of Chapter 1.

5. Message Passing: Combining Patterns
Digs deeper into message passing examples by com-
bining multiple patterns in each example.

6. Message Passing Example Applications
Presents full MPI applications written in C, one of
which uses the PRNG library from Chapter 3.

7. OpenACC Basics
Compares sequential, OpenMP, multicore (using
OpenACC), and GPU (using OpenACC) solutions to
the classic vector addition problem.

8. OpenACC: Next Steps
Presents approachable OpenACC examples of 2-
dimensional matrix calculations on the GPU, along
with suggested exercises. Presents scalability results
that let the reader directly experience the benefits of
this technology.

Use Cases: The Intermediate PDC book may be used
during a full semester/quarter PDC course. Instructors who
wish to emphasize particular technologies may pick certain
chapters to fit their needs. Here are some additional suggested
scenarios for using sections of the book outside of that context:

e Chapter 1 introduces parallel computing patterns, and
serves as background reading for subsequent chapters.

« Instructors in a sophomore level Systems course using C
who want to include a week or more on shared memory
parallel computing may use Chapter 2 in a class-lab
setting. The chapter has 16 examples that start from base
principles and progress to more complex and nuanced
concepts; instructors can stop after the first 8 examples
and students will have tried the most important concepts.

« Instructors who wish to cover message passing but prefer
C to the Python examples in the beginner book can use
Chapter 4 as a classroom activity. For those wishing to
go further, Chapter 5 provides additional content.

C. Our Experiences

While creating these books we have taken opportunities to
use portions of them in our courses and in our undergraduate
research experiences. Shoop used PDC for Beginners as a two-
day intervention in a sophomore-level systems course taught
by a colleague. Reading from Chapter 0 was assigned as
background before class, and students completed the exercises
in Chapter 1 in a one-hour class. The following class day,
Shoop provided a brief presentation about the GPU and its
programming model. She then was able to demonstrate the
matrix multiplication example from chapter 6.2, showing the
remarkable additional speedup and scalability of the CUDA
version over the already reasonably scalable OpenMP version.
This type of intervention inpressed the students and made
them interested in taking the advanced PDC course the next
semester, which some did. In that PDC course, Shoop used
a great deal of PDC for Beginners as starting material, then
transitioned to the Intermediate PDC book. Not all of it was
completed before the course ended, but many of the book’s
examples (in a different format) were used for activities.
Matthews did a similar guest appearance in a Systems course
lab, where she used the CUDA material from Chapter 4 as
an activity. She has also used portions of the book as starting
points for students working on independent research projects
who need to learn to use a particular HPC platform.

IV. IMPLEMENTATION DETAILS

In order for the interactive content of these two books to
work, it was necessary to design and build the “behind the
scenes” components needed to run PDC code in the browser.
While Runestone Interactive [10] supports a significant amount
of interactivity within books, its Jobe server for performing
computations in compiled languages does not natively support
the ability to run the parallel and distributed code we require.
To allow instructors and students to compile and execute PDC
code interactively within Runestone, we:

1) Updated the open source Runestone code base to support
Active Code blocks for PDC languages and libraries (the
front end of the web application).

2) Extended Jobe to become an intermediary service in the
case of PDC, which forwards requested computations to
a custom-built “execpdc” backend compute server.

3) Wrote chapters and recruited authors to write sections
for the beginner book.

4) Procured hardware to host the books and servers.

We now describe these activities in greater detail.

A. Front end changes to Runestone

Our front end changes to the Runestone code provide new
options for our textbook authors, and are not directly visible to
the instructors and students who use our interactive books. Our
goal for redesigning and improving Runestone Active Code
blocks (also known as Activecode directives) was to provide
an extensible way to handle multiple PDC platforms, with
different compilers and runtime capabilities. An Active Code
directive supporting PDC compilers needs to determine: (i)
that the code is for a PDC technology (versus a traditional
serial job), and (ii) which PDC compiler to use.

The top of Figure 2 shows an example of how a Runestone
Activecode directive renders in the book. This particular
example shows a snippet of OpenMP code. Note that students
and instructors see and interact with the code as shown there.

Textbook authors write the books in restructured text and
use a special Runestone directive called an Activecode block
to produce these. Since OpenMP is built-in on all modern
versions of gcc (and Runestone and Jobe run gcc natively), this
particular code block can technically be implemented using the
original Runestone Activecode directive (see Figure 4A) by
including the C linker flag ~fopenmp in the directive’s asso-
ciated : linkerargs: tag in the reStructuredText (rst) file.
Runestone makes the design choice to hide linker arguments
from students to make learning easier in texts for introductory
programming courses. We followed this design philosophy of
hiding this information for our textbook examples.

Figure 4A depicts the original way of writing C-language
Active Code blocks in Runestone, and Figure 4B shows our
revision for sending PDC details to our modified Jobe service.
Notice we have changed the : 1anguage : directive from C to
a more generic pdc and added a new directive for the compiler
called : compiler:, enabling an author to explicitly choose
a compiler. Thus far, we have added support for the following
tags for the : compiler: directive for our code blocks:

e gcc and g++ for OpenMP,

e mpicc and mpidpy for MPI,

e nvcc and nvce++ for CUDA,

e pgcc and pgc++ for OpenACC

The compiler the author chooses also provides a clue to the
back-end server for the hardware that should be used (see
Section IV-B for more details).

Runestone’s C Active Code blocks will reveal command
line arguments if authors add them, and we make use of

.. activecode:: sm_fork_join
language: C
‘linkargs: [-fopenmp’]
:enabledownload:
:caption: Serial Fork-Join

#include // printf()
#include // OpenMP

int main(int argc, char* argv) {
printf("\nBefore...\n");

Il #pragma omp parallel
printf("\nDuring...");

printf("\n\nAfter...\n\n");

return 0;

.. activecode:: sm_fork_join

language:

:compiler: 'gec’

‘linkargs: [-fopenmp’]
:enabledownload:
:caption: Serial Fork-Join

#include /1 printf()
#include // OpenMP

int main(int argc, char** argv) {
printf("\nBefore...\n");

/I #pragma omp parallel
printf("\nDuring...");

printf("\n\nAfter...\n\n");

return 0;

} }

A. Original Runestone Active Code block B. Redesigned PDC Active Code block

Fig. 4. Changes for PDC to Runestone Active Code blocks

them often in the intermediate book. In addition to letting
non-novice readers update command line arguments, it is
sometimes instructive to let readers experiment with compiler
flags, so we deviated from the original Runestone design
choice (which hides them) and chose to expose them.

Figure 5 shows a web rendering of this for an OpenACC
example. The block allows authors to set and display default
command line arguments for C/C++ active code examples
along with any compiler flags. Users can change and re-run
the example with modified arguments or flags.

Original - 1 of 1
#pragma acc kernels
#pragma acc loop collapse(2) independent
for (int i = 0; i < size; ++i) {
for (int j = 0; j < size; ++j) {
float tmp = ©.;
#pragma acc loop seq
for (int k = 0; k < size; ++k) {
tmp += A[i*size + k] * B[k*size + i];
} 4

Command line arguments for running|['4', '1",'1]
Compiler flags [-fast', "-acc=gpu’, -gpu=managed', -Minfo=accel']

Activity: 1 Multiply one matrix by another using OpenACC pragmas (8-matrix-multiply)

Fig. 5. Exposing the compiler flags to readers

Figure 6 shows what the beginning of the Active Code block
in the underlying rst file looks like for the example in Figure 5.
Note the use of the :runargs: tag for command line and
the :compileargs: tag for compiler flags. These Active
Code blocks also allow for default compiler options within
the service that compiles the code, so for beginner examples
we can hide these by eliminating the :compileargs: tag
in the rst code. Similarly, when examples don’t call for special
command line arguments, we don’t use them and they aren’t
rendered in the book.

These changes to Runestone’s Active Code block allow us
to compile and run code from multiple PDC compilers. MPI
was an interesting challenge because the executable needs to

.. activecode:: 8-matrix-multiply
language:
:compiler: 'pgcc’
:compileargs: [-fast, -acc=gpu’, -gpu=managed', -Minfo=accel]
:linkargs: [-fopenmp’, -Im’]
rrunargs: ['4','1, '11]
:caption: Multiply one matrix by another using OpenACC pragmas

Fig. 6. Exposing the compiler flags to readers

be run via mpirun, which can have its own flags. Since
Runestone’s Activecode directive already had a tag called
:interpreterargs: (originally designed for Java and
Python), we chose to adapt that for the flags that go with
mpirun. When present in the code block, these are also
rendered in the book, so they are visible to the reader for
MPI C/C++ or mpidpy code. The only MPI flag we have used
so far is —np, to indicate how many processes to use.

B. Jobe as an intermediate service, and back end execution

In general, parallel and distributed computations may call
for a bewildering range of hardware systems (large multicore
hosts, networked clusters of high-performance nodes, acceler-
ators such as GPUs, etc.) and software platforms (compiled
and/or interpreted languages, plus libraries such as MPI,
OpenMP, Cilk+, etc.), as well as heterogeneous combinations
of these (e.g., MPI jobs involving OpenMP and/or CUDA on
each node). Even our beginners text assumes support for C
and Python, MPI and OpenMP, and CUDA and OpenACC for
GPU computing. More advanced books could benefit from
support for additional hardware/software platforms.

Traditional Runestone books focus on a single software
platform (e.g., Python or C++ language, or a database man-
agement system). In many cases, Runestone implements those
computations directly within the user’s browser (e.g., using
a web assembly implementation of Python, or a subset of
standard Python sufficient for that book). Code in Active
Code blocks for compiled languages (e.g., C or C++) are
sent directly to a Jobe server, which traditionally runs in a
single-core container that has support for Jobe’s pre-configured
programming languages. This constrains the kinds of programs
that an unmodified Jobe server can perform.

By contrast, we want readers of our PDC Runestone books
to learn from Active Code examples depicting specialized PDC
computations. For example, a beginners exercise might have
a student explore scalability by running an Active Code block
and varying the number of threads or processes; exercises for
more advanced students might compare scalability of PDC
computations on a multi-core machine vs. a cluster system.

To support such a wide range of computational options,
we created a custom Jobe extension for PDC computations,
which forwards pdc computations to an “execpdc” backend
server that executes code from an Active Code block in a
hardware+software platform specified by that block. Figure 7
depicts the Runestone server and our extended Jobe server
in green ovals, and an “execpdc” backend server in a yellow

Originad - 1 61

Runestone
Server

JOBE
Server

Actaty: | Senal Fork-Join

Browser client

execpdc
Server

- OpenMP job
Container ™
8-core node
OpenMP job
Container CUDA job
16-core node MPI job OpenACC job

16-core node

with GPU

Cluster PDC Services

Fig. 7. Design of new Runestone system

region, capable of performing computations on diverse hard-
ware+software systems.

Our design, in which Jobe becomes an intermediate server
rather than a compute server, requires minimal modification
to Jobe itself: we add just one custom Jobe extension. This
extension parses Runestone options given in an Active Code
block (describing a desired hardware+software system, and
per-job parameters such as compiler flags or number of
threads/processes), then forwards that desired computation to
an “execpdc” backend server for execution. By separating this
functionality, the machine running our modified Jobe server
does not itself require any specialized PDC compute capabili-
ties. Also, the “execpdc” backend server can be configured as
needed (e.g., to accommodate a particular library or version of
CUDA), without further modifications to Runestone or Jobe.

C. Authoring book material

Our books are authored in reStructuredText, and maintained
in GitHub as a series of . rst files. Typically, each section of
each chapter is its own file. Figures 4 and 6 provide a glimpse
of the Active Code blocks in such files. There is a learning
curve with rst, but we had prior experience from writing PDC
module materials, plus Shoop has written another Runestone
book, which reduced the learning curve. We found it fairly
straightforward to add other active-learning features, such as
the multiple choice question shown in Figure 2.

We welcome ideas from the community about contributing
to this project going forward; we give recognition in the book
and assign a DOI to each contributor’s work. We are happy
to take ideas and help with the authoring of the rst files.

D. Hosting

After creating material in reStructuredText files, we use the
Runestone system to build the web-based books from these
files. The building process creates fully active HTML and
Javascript files that can be hosted on any web server, or the
book can be hosted on a complete Runestone server, which has
a DBMS to hold information about user logins, what activities
they have completed, and many other features.

Since we are still developing material and the books will
continue to evolve, we chose to host the books on a web server
rather than a complete Runestone server. Currently, the front-
end component of the book resides on a small VM on a CS
department system at Calvin University; the green oval labeled
“Runestone Server” in figure 7 is a simple Apache web server.
In the future we plan to incorporate a full Runestone Server’s
capabilities, along with other enhancements described below.
Likewise, all of the PDC services shown in the yellow / bottom
portion of Figure 7 currently reside on a single 96-core Calvin
University server.

V. CONCLUSIONS AND FUTURE WORK

We have presented two free, online, interactive PDC text-
books that students and faculty can use now to learn about
PDC concepts. Our primary contributions are as follows: (i)
we—and invited guests—authored two brand-new textbooks that
cover beginning and intermediary PDC content; (ii) we ex-
tended Runestone Activecode directives with features needed
to support PDC code; (iii) we built an enhanced version of
the Jobe server as an intermediate service; and (iv) we built
an “execpdc” back-end server that permits PDC code to be
compiled and executed on a variety of parallel platforms from
within the browser. Our book chapters employ a modular
design, making them useful in variety of curricular contexts.
Thanks to our back-end design, it is relatively straightforward
to add support for additional languages or systems.

The textbook’s front-end and back-end work well for the
current level of use, but the back-end’s scalability is ultimately
limited by its 96-core host. To avoid this limitation, we are
currently transitioning the back-end to the Google Cloud
Platform. Using the cloud will enable us to spin up resources
on demand and scale up during times of heavy use. Thanks
to funding from the Department of Defense (DoD), the PDC
computing resources for these books should be available for
at least 5 years after this transition is complete.

We plan to continue adding material to the Intermediate
PDC book, which we have authored entirely ourselves so
far. We intend to add more examples for most compilers and
platforms, and we also plan to include a chapter devoted to
suggestions for projects or assignments for a PDC course.
We hope to reach out to authors of Peachy Parallel Assign-
ments [15] to include some of those submissions.

We also plan to use the same system to host a new advanced
PDC book, whose development is currently underway. We
expect to add OpenMP 5 support for GPU computations, an
alternative to OpenACC, and we have begun exploring Chapel
examples that we may include in this book, as well as Open-
Cilk [16] examples that emphasize performance engineering.
We welcome contributions from the PDC community for this
work; to participate, please contact the authors.

ACKNOWLEDGMENTS

We are grateful for the contributions of Dorian Arnold,
Steven Bogaerts, and John Rieffel who guest-authored sections
of PDC for Beginners.

This work was supported by the National Science Foun-
dation, DUE-1822480/1822486/1855761 and by additional
funding from the Department of Defense. Research was
sponsored by the United States Military Academy (USMA)
and was accomplished under Cooperative Agreement Number
WOI11NF-23-2-0044. The views and conclusions contained
in this document are those of the authors and should not
be interpreted as representing the official policies, either
expressed or implied, of the Army Research Laboratory or
the U.S. Government. The U.S. Government is authorized
to reproduce and distribute reprints for Government purposes
notwithstanding any copyright notation herein.

REFERENCES

[1] Joint Task Force on Computing Curricula, Association for Computing
Machinery (ACM) and IEEE Computer Society, Computer Science
Curricula 2013: Curriculum Guidelines for Undergraduate Degree
Programs in Computer Science. New York, NY, USA: Association
for Computing Machinery, 2013.

[2] M. J. Oudshoorn, S. Thomas, R. K. Raj, and A. Parrish,
“Understanding the new ABET computer science criteria,” in
Proceedings of the 49th ACM Technical Symposium on Computer
Science Education, ser. SIGCSE ’18. New York, NY, USA:
Association for Computing Machinery, 2018, p. 429-434. [Online].
Available: https://doi.org/10.1145/3159450.3159534

[3] R. Brown, E. Shoop, J. Adams, C. Clifton, M. Gardner, M. Haupt, and
P. Hinsbeeck, “Strategies for preparing computer science students for
the multicore world,” in Proceedings of the 2010 ITiCSE working group
reports on Working group reports, ser. ITICSE-WGR *10. New York,
NY, USA: ACM, 2010, pp. 97-115, ACM ID: 1971689.

[4] “CSinParallel Project Code Repository,” https://github.com/csinparallel/
CSinParallel, accessed: 01-24-2024.

[5] T. Kluyver, B. Ragan-Kelley, F. Pérez, B. E. Granger, M. Bussonnier,
J. Frederic, K. Kelley, J. B. Hamrick, J. Grout, S. Corlay et al.,
“Jupyter notebooks-a publishing format for reproducible computational
workflows.” Elpub, vol. 2016, pp. 87-90, 2016.

[6] B. Glick and J. Mache, “Using jupyter notebooks to learn high-
performance computing,” J. Comput. Sci. Coll., vol. 34, no. 1, p.
180-188, oct 2018.

[71 J. B. Hamrick, “Creating and grading ipython/jupyter notebook as-
signments with nbgrader,” in Proceedings of the 47th ACM Technical
Symposium on Computing Science Education, 2016, pp. 242-242.

[8] “Collaboratory FAQ,” https://research.google.com/colaboratory/faq.
html, accessed: 01-20-2024.

[9] Z. Xu, “Teaching heterogeneous and parallel computing with google
colab and raspberry pi clusters,” in Proceedings of the SC 23
Workshops of The International Conference on High Performance
Computing, Network, Storage, and Analysis, ser. SC-W ’23. New
York, NY, USA: Association for Computing Machinery, 2023, p.
308-313. [Online]. Available: https://doi.org/10.1145/3624062.3624095

[10]

[11]

[12]

[13]

[14]

[15]

[16]

B. J. Ericson and B. N. Miller, “Runestone: A platform for
free, on-line, and interactive ebooks,” in Proceedings of the 5lst
ACM Technical Symposium on Computer Science Education, ser.
SIGCSE °20. New York, NY, USA: Association for Computing
Machinery, 2020, p. 1012-1018. [Online]. Available: https://doi.org/10.
1145/3328778.3366950

R. Lobb, “JOBE,” https://github.com/trampgeek/jobe, 2018, accessed:
01-20-2024.

J. C. Adams, “Injecting parallel computing into cs2,” in Proceedings
of the 45th ACM Technical Symposium on Computer Science
Education, ser. SIGCSE ’14. New York, NY, USA: Association
for Computing Machinery, 2014, p. 277-282. [Online]. Available:
https://doi.org/10.1145/2538862.2538883

T. G. Mattson, B. Sanders, and B. Massingill, Patterns for parallel
programming. Pearson Education, 2004.

K. Keutzer, B. L. Massingill, T. G. Mattson, and B. A. Sanders, “A
design pattern language for engineering (parallel) software: merging
the plpp and opl projects,” in Proceedings of the 2010 Workshop on
Parallel Programming Patterns, ser. ParaPLoP ’10. New York, NY,
USA: Association for Computing Machinery, 2010. [Online]. Available:
https://doi.org/10.1145/1953611.1953620

“Peachy Assignments,” https:/tcpp.cs.gsu.edu/curriculum/?q=peachy,
accessed: 01-20-2024.

“OpenCilk,” https://www.opencilk.org/, accessed: 01-24-2024.

https://doi.org/10.1145/3159450.3159534
https://github.com/csinparallel/CSinParallel
https://github.com/csinparallel/CSinParallel
https://research.google.com/colaboratory/faq.html
https://research.google.com/colaboratory/faq.html
https://doi.org/10.1145/3624062.3624095
https://doi.org/10.1145/3328778.3366950
https://doi.org/10.1145/3328778.3366950
https://github.com/trampgeek/jobe
https://doi.org/10.1145/2538862.2538883
https://doi.org/10.1145/1953611.1953620
https://tcpp.cs.gsu.edu/curriculum/?q=peachy
https://www.opencilk.org/

	Introduction
	Related Work
	About the Books
	PDC for Beginners
	Intermediate PDC
	Our Experiences

	Implementation Details
	Front end changes to Runestone
	Jobe as an intermediate service, and back end execution
	Authoring book material
	Hosting

	Conclusions and Future Work
	References

