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Abstract

We present new and novel insights into the behavior of
two maximum parsimony heuristics for building evolution-
ary trees of different sizes. First, our results show that the
heuristics find different classes of good-scoring trees, where
the different classes of trees may have significant evolu-
tionary implications. Secondly, we develop a new entropy-
based measure to quantify the diversity among the evolu-
tionary trees found by the heuristics. Overall, topological
distance measures such as the Robinson-Foulds distance
identify more diversity among a collection of trees than
parsimony scores, which implies more powerful heuristics
could be designed that use a combination of parsimony
scores and topological distances. Thus, by understanding
phylogenetic heuristic behavior, better heuristics could be
designed, which ultimately leads to more accurate evolu-
tionary trees.

Keywords: phylogenetic trees, maximum parsimony,
phylogenetic heuristics, performance analysis

1 Introduction

Phylogenetics is concerned with inferring the genealog-
ical relationships between a group of organisms (or taxa).
These evolutionary relationships are typically depicted in a
binary tree, where leaves represent the organisms of interest
and edges represent the evolutionary relationships. Phylo-
genetic trees have been used successfully in designing more
effective drugs, tracing the transmission of deadly viruses,
and guiding conservation and biodiversity efforts [1], [7].
However, inferring evolutionary trees is not a trivial task.
Since it is impossible to know the true evolutionary history
for a set of organisms, the problem is often reformulated
as an NP-hard optimization problem. Here, trees are given
a score, where trees with better scores are believed to be
better approximations of the truth. Given the exponential

number of potential hypotheses (or trees) for a set of taxa,
an exhaustive exploration of the tree space is not possible.
Instead, phylogenetic inference relies on effective heuristics
for obtaining good-scoring trees.

In this paper, we develop novel approaches to com-
pare two well-known maximum parsimony (MP) search al-
gorithms, Parsimony Ratchet [9] and Recursive-Iterative
DCM3 (Rec-I-DCM3) [12] on three molecular datasets of
60, 174, and 500 taxa. Our parsimony ratchet algorithm is
called Paupratsince we used PAUP* [14] to implement it.
Our work centers around the following two questions.

1. What value (if any) do slower heuristics provide?

2. How effective are parsimony scores in distinguishing
between different tree topologies?

Traditional techniques for comparing phylogenetic heuris-
tics use convergence plots to show how the best score im-
proves over time. Under this measure, the fastest heuristic is
desired. Given that different tree topologies may have iden-
tical tree scores, preference of good-scoring trees found by
fast heuristics may result in overlooking potentially more
accurate evolutionary histories that can be found by slower
approaches.

Our first observation is that there are benefits to consider-
ing different speed heuristic implementations of a MP phy-
logenetic analysis. In general, Pauprat is a slower heuristic
than Rec-I-DCM3. Since we were curious of the merits of
a heuristic, time constraints were removed from considera-
tion in this study. However, both Pauprat and Rec-I-DCM3
find different trees with the same best parsimony scores.
These diverse best-scoring trees denote that the heuristics
are visiting different areas of the exponentially-sized tree
space. We note that although TNT [4] has a faster im-
plementation of parsimony ratchet than PAUP*, TNT does
not have the capability to return to the user the set of trees
found during each iterative step of the parsimony ratchet al-
gorithm (see Section 2.1). The Pauprat implementation of
parsimony ratchet provides this capability. Moreover, the
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Rec-I-DCM3 implementation also provides users with the
trees found during each step of the algorithm.

Secondly, although different trees are found with the
same parsimony score, it’s interesting to consider whether
maximum parsimony is effectively distinguishing between
the trees, which has significant implications for understand-
ing evolution. By using a measure called relative en-
tropy, we show for a given collection of trees that parsi-
mony scores have less information content than topolog-
ical distance measures such as the Robinson-Foulds (RF)
distance [11]. In other words, for a collection of trees,
parsimony scores identify fewer unique trees—which in-
creases the potential of being stuck in a local optimum
and producing less accurate phylogenies—than topological
distance measures. Thus, more powerful search strategies
could be designed that use a combination of score and topo-
logical distance to guide the search into fruitful areas of the
exponentially-sized tree space.

2 Maximum Parsimony Heuristics

We study heuristics that use the maximum parsimony
(MP) optimization criterion for inferring the evolutionary
history of different taxa. Each of the taxa in the input is
represented by a string of characters such as DNA or RNA
molecular sequences. The molecular sequences for each of
the taxa are put into a multiple alignment, so that they all
have the same length. Maximum parsimony then seeks a
tree, along with inferred ancestral sequences, so as to min-
imize the total number of evolutionary events by counting
only point mutations.

2.1 Parsimony ratchet

Parsimony ratchet is a particular kind of phylogenetic
search performed with alternating cycles of reweighting and
Tree Bisection Recombination (TBR). The approach works
as follows: starting with an initial tree, a few of the char-
acters (between 5 – 25%) are sampled, and reweighted. It
suffices to say here that reweighting of characters involves
duplicating the characters so that each shows up twice (or
more) in the resulting dataset. Then, using these reweighted
characters, TBR search is performed until a new starting
tree is reached using this subset of data. This new starting
tree is then used with the original data set to repeat the phy-
logenetic search. Parsimony ratchet tries to refine the search
by generating a tree from a small subset of the data and us-
ing it as a new starting point. If the new tree is better than
the old one, then the new one is used as the new starting
tree. Otherwise, the old one is kept.

2.2 Rec-I-DCM3

Recursive-Iteration DCM3 (Rec-I-DCM3) [12] imple-
ments a disk-covering method (DCM) [5], [6], [8] to im-
prove the score of the trees it finds. A DCM is a divide-
and-conquer technique that consists of four stages: divide,
solve, merge, and refine. At a high level, these stages follow
directly from DCM being a divide-and-conquer technique.

Rec-I-DCM3, involves all of the above DCM stages, but
in addition, is both recursive and iterative. The recursive
part concerns the divide stage of the DCM, where after di-
viding the input tree’s leaf nodes into overlapping subsets of
taxa, or subproblems, the subproblems themselves may be
further divided into smaller subproblems. This is an impor-
tant enhancement to the DCM approach since for very large
datasets, the subproblems remain too large for an immedi-
ate solution. Thanks to the recursion, the subproblems are
eventually small enough that they may be solved directly us-
ing some chosen base method. At this point, Rec-I-DCM3
uses strict consensus merger to do the work of recombining
the overlapping subtrees to form a single tree solution. The
iterative part of Rec-I-DCM3 refers to the repetition of the
entire process just described. That is, the resulting tree so-
lution becomes the input tree for a subsequent iteration of
Rec-I-DCM3.

3 Comparing Collections of Trees

3.1 Robinson-Foulds distance

In our experiments, we compare good-scoring trees
found by the Pauprat and Rec-I-DCM3 algorithms. We use
the Robinson-Foulds (RF) distance to measure the topolog-
ical distance between two trees. The RF distance between
two trees is the number of bipartitions that differ between
them. It is useful to represent evolutionary trees in terms of
bipartitions, in which removing an edge e from a tree sepa-
rates the leaves on one side from the leaves on the other. The
division of the leaves into two subsets is the bipartition Bi

associated with edge ei. Let Σ(T ) be the set of bipartitions
defined by all edges in tree T . The RF distance between
trees T1 and T2 is defined as

dRF (T1, T2) =
|Σ(T1) − Σ(T2)| + |Σ(T2) − Σ(T1)|

2

Our figures plot the RF rate, which is obtained by normal-
izing the RF distance by the number of internal edges and
multiplying by 100. Assuming n is the number of taxa,
there are n − 3 internal edges in a binary tree. Hence the
maximum RF distance between two trees is n − 3, which
results in an RF rate of 100%. The RF rate allows us to
compare topological differences when the number of taxa
is different. Thus, the RF rate varies between 0% and 100%
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signifying that trees T1 and T2 are identical and maximally
different, respectively.

3.2 All-pairs RF rate

The All-pairs RF rate measure takes the average RF dis-
tance between a collection of t trees. To do this, we first
compute a t × t matrix of Robinson-Foulds (RF) rates be-
tween every pair of trees. Entry (i, j) in the RF matrix cor-
responds to the RF distance between tree Ti and tree Tj .
Since the RF matrix is symmetric, we only sum the RF rates
in the upper triangle and divide by t(t−1)

2 .

3.3 Relative entropy

Entropy represents the amount of chaos in the system.
Here, our system consists of a collection of trees that can be
distinguished by two features: parsimony score and topo-
logical distance. High entropy describes the presence of
many unique trees that are evenly distributed in our popu-
lation (or collection) of trees. Low entropy values describe
a population which contains fewer unique trees. In other
words, many of the trees in the collection share identical
features (i.e, parsimony score or RF rates). Entropy quan-
titatively captures the distribution of parsimony scores and
RF rates among the collection of trees of interest. In our
plots, we show relative entropy, which is a normalization of
entropy, to allow the comparison of entropy values across
different population sizes.

Let λ represent the total number of objects (parsimony
scores or RF rates) in the population of trees. For example,
suppose we want to partition a population of 100 trees based
on their parsimony scores. Then, λ = 100. However, if we
are interested in partitioning the 100 trees based on the up-
per triangle of the corresponding 100×100 RF rates matrix,
then λ = 100(99)

2 or 4,950 since the RF matrix is symmetric.
Next, we group the λ objects into P total partitions. Each
partition, i, contains ni individuals with identical values.
That is, if the objects of interest are parsimony scores, then
each of the ni individuals in partition i will have the same
parsimony score. For RF rates, each individual in partition
i will have the same RF rate.

The proportion, pi, of the population of trees occupied
by population partition i is pi = ni

λ . We can compute the
entropy (ET ) of the collection of parsimony scores as:

ET = −
P∑

i

pi log pi.

Higher entropy values indicated more diversity (hetero-
geneity) among the population of trees. Lower entropy val-
ues indicate less diversity (homogeneity) in the population.
The lowest entropy value is 0.

Assuming P partitions, the highest entropy value
(Emax) is log P . To compare collections with different
numbers of objects λ, we introduce relative entropy (Erel)
defined as the quotient between the entropy ET and the
maximum entropy Emax and multiplying by 100 to obtain
a percentage. Thus,

E =
ET

Emax
× 100.

3.4 Resolution rate

For n taxa, a complete, unrooted binary tree will have
n − 3 bipartitions (or internal edges), and all of the evo-
lutionary relationships in the tree are completely resolved.
Trees with less than n − 3 bipartitions are considered to
have unresolved relationships among the n taxa. In general,
binary (or 100% resolved) trees are preferred by life scien-
tists. The resolution rate of a tree is the percentage of bipar-
titions that are resolved. One common use of this measure
is related to evaluating consensus trees, which are used to
summarize the information from a collection of trees. The
strict consensus method returns a tree such that the biparti-
tions of the tree are only those bipartitions that occur in all
the trees. The majority consensus uses only those biparti-
tions that occur in at least 50% of the trees of interest. Thus,
the desired result is a highly resolved majority or strict con-
sensus tree, which represents that a high degree of similarity
was found among the trees in the collection of interest.

4 Experimental Methodology

4.1 Datasets

We used the following biological datasets as input to
study the behavior of the maximum parsimony heuristics.

1. A 60 taxa dataset (2,000 sites) of ensign wasps com-
posed of three genes (28S ribosomal RNA (rRNA),
16S rRNA, and cytochrome oxidase I (COI)) [2]. The
best-known parsimony score is 8,698, which was es-
tablished by both Pauprat and Rec-I-DCM3.

2. A 174 taxa dataset (1,867 sites) of insects and their
close relatives for the nuclear small subunit ribosomal
RNA (SSU rRNA) gene (18S). The sequences were
manually aligned according to the secondary structure
of the molecule [3]. The best-known parsimony score
is 7,440, which was established by both Pauprat and
Rec-I-DCM3.

3. A set of 500 aligned rbcL DNA sequences (759
parsimony-informative sites) [10] of seed plants. The
best-known parsimony is 16,218, which both Pauprat
and Rec-I-DCM3 found.
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4.2 Starting trees

All methods used PAUP*’s random sequence addition
module to generate the starting trees. First, the ordering
of the sequences in the dataset is randomized. Afterwards,
the first three taxa are used to create an unrooted binary tree,
T . The fourth taxon is added to the internal edge of T that
results in the best MP score. This process continues until all
taxa have been added to the tree. The resulting tree is then
used as the starting tree for a phylogenetic analysis.

4.3 Parameter settings

We set the parameters of the Pauprat and Rec-I-DCM3
algorithms according to the recommended settings in the lit-
erature. We use PAUP* [14] to analyze our four datasets us-
ing the parsimony ratchet heuristic. The implementation of
the parsimony ratchet was implemented using PAUP* [14].
For our analysis, we randomly selected 25% of the sites
and doubled their weight; initially, all sites are equally
weighted. On each dataset, we ran 5 independent runs of
the parsimony ratchet, each time running the heuristic for
1,000 iterations.

For Rec-I-DCM3, it is recommended that the maximum
subproblem size is 50% of the number of sequences for
datasets with 1,000 or less sequences and 25% of then num-
ber of sequences for larger datasets not containing over
10,000 sequences. We used the recommended settings es-
tablished by Roshan et. al [12] for using TNT as a base
method within the Rec-I-DCM3 algorithm.

4.4 Implementation and platform

We used the HashRF algorithm to compute the RF dis-
tances between trees [13]. Each heuristic was run five times
on each of the biological datasets. All experiments were run
on a Linux Beowulf cluster, which consists of four, 64-bit,
dual dual-core processor nodes (16 total CPUs with gigabit-
switched interconnects). Each node contains four, 2 GHz
AMD Operton processors and they share 4GB of memory.
We note that both Rec-I-DCM3 and parsimony ratchet are
sequential algorithms. The parallel computing environment
was used as a way to execute multiple, independent batch
runs concurrently.

5 Results

5.1 Frequency of the top-scoring trees

Table 1 shows the number of trees found by the Pauprat
and Rec-I-DCM3 heuristics in terms of the number of steps
they are from the best score, b, we found. Let x represent
the parsimony score of a tree T . Then, tree T is x − b steps

away from the best score. In Table 1, step0, step1, and step2

represents trees that are 0, 1 and 2 steps away from the best
score, b, respectively. Hence, step0 trees are the trees with
the best-known scores. It is clear that the top-scoring trees
from Pauprat comprise a large proportion of the total collec-
tion of 5,000 trees for the smaller datasets (60 and 174 taxa).
On the other hand, the top trees for Rec-I-DCM3 comprise
the majority of its collection of trees for the larger dataset.
So, if one is simply interested in frequency counts, Pauprat
finds best-scoring trees more often than Rec-I-DCM3 on the
smaller datasets and Rec-I-DCM3 prevails on the 500 taxa
dataset.

5.2 Topological comparisons of top trees

Figures 1 and 2 show the topological differences be-
tween the top-scoring trees found by the different search
heuristics. We use a heatmap representation, where each
value (cell) in the two-dimensional 6 × 6 matrix is repre-
sented as a color. Darker (lighter) colors represent smaller
(higher) values such as consensus tree resolution and all-
pairs RF rates, which are described in Section 3. Our
heatmaps are symmetric two-dimensional matrices. For
each heatmap, the bottom values are x coordinates and the
values on the left are y coordinates. Each heatmap show
3 types of comparisons among the top-scoring trees (i.e.,
step0, step1, and step2 trees) found by the search heuristics.

1. Pauprat trees compared to Pauprat trees, which corre-
sponds to cells (x, y), where x ≤ 3 and y ≤ 3.

2. Rec-I-DCM3 trees compared to Rec-I-DCM3 trees,
which relates to cells (x, y), where x ≥ 4 and y ≥ 4.

3. Pauprat trees compared to Rec-I-DCM3 trees, which
occurs in cells (x, y), where x ≥ 4 and y ≤ 3 or x ≤ 3
and y ≥ 4.

Consider the heatmap representation in Figure 1(a). In
cell (1,1), the step0 trees found by Pauprat are compared to
each other. In particular, the strict consensus is computed
for the 1,508 step0 trees (see Tables 1 to get the number of
step0 trees). The heatmap plots the resolution rate of the
resulting strict consensus tree. High resolution rates (e.g.,
above 85%) reflect high similarity among the trees of inter-
est. For Pauprat, the step0 (best-scoring) trees for the 60
taxa dataset are all identical resulting in a strict consensus
resolution rate of 100%. The heatmap also shows compar-
isons of trees with different number of steps from the best.
For example, cell (3,2) compares step2 (x = 3), and step1

(y = 2) trees from Pauprat. The resulting strict consensus
tree has a resolution rate of 68%, which is based on 1,872
trees (see Table 1). For both Pauprat and Rec-I-DCM3, the
majority resolution of comparing the top trees always re-
sulted in a resolution of at least 90% (not shown).
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Pauprat Rec-I-DCM3
No. of taxa step0 step1 step2 % of total step0 step1 step2 % of total

60 1,508 1,509 363 67.6% 59 343 134 10.7%
174 2,626 1,042 635 86.1% 170 491 1,301 39.2%
500 184 562 955 34.0% 1,231 1,279 983 69.9%

Table 1. Count of the top 3 scoring trees from Pauprat and Rec-I-DCM3. This total is based on the
number of top-scoring trees across all five runs of each algorithm. For Pauprat (Rec-I-DCM3), the
step0, step1, and step2 trees make up 67.6% (10.7%) of the 5,000 total trees in the collection for the 60
taxa dataset.
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Figure 1. Comparing the strict consensus tree resolution of the top-scoring trees found by the
Pauprat and Rec-I-DCM3 heuristics. For best viewing results, please view electronically.
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Figure 2. Comparing the all-to-all RF rates of the top-scoring trees found by the Pauprat and Rec-I-
DCM3 heuristics. For best viewing results, please view electronically.

Figure 2 is read similarly to Figure 1 except that instead
of computing the strict consensus resolution rate of the rel-
evant trees, the average all-pairs RF distance is computed.
Let t represent the total number of trees of interest for entry
(i, j) in the heatmap. Next, the t × t RF distance matrix is
computed for cell. Since the RF matrix is symmetric, the
upper triangle (without the diagonal elements) is used to
compute the average. That is, all of the values in the upper
triangle are summed and then divided by t(t−1)

2 to get the

average RF distance. We normalize this distance by divid-
ing it by n − 3 to report the RF rate between 0% and 100%
in the heatmap as it makes it easier to compare topological
distances across different number of taxa.

Overall, the heatmaps show that the Pauprat and Rec-
I-DCM3 algorithms find topologically similar best (step0)
trees, regardless of whether one uses the strict consensus
resolution rate or the average RF rate measures. In fact,
this is quite interesting that the heuristics land on the same
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best trees even though they start with different starting tree
topologies. There is more variety in the topological struc-
ture of the step1 and step2 trees of the algorithms. Hence,
if trees that have a slightly higher score than the best score
are of interest, then both algorithms have value since they
explore different areas of tree space.

5.3 Comparisons over time

Next, we focus on performance in terms of time using all
of the trees returned by each search heuristic. Here, time is
measured by number of iterations (which is CPU time inde-
pendent) and not on wall-clock time (e.g., number of hours
required). Although number of iterations is an architecture-
independent measure, it may not be completely adequate as
each algorithm may do more work than the other per iter-
ation. But, given that we are trying to compare heuristics
based on solely their input/output behavior, that is the col-
lection of trees returned after 1,000 iterations, we believe
that using iterations as a basis of time is adequate for our
purposes in this paper.

Figures 3 and 4 use relative entropy as a measure for uni-
formly quantifying the information content of parsimony
scores and RF rates. Relative entropy is shown as a per-
centage of the maximum possible entropy. Higher relative
entropy means that there is more diversity (heterogeneity)
among the values of interest, and hence higher informa-
tion content. Lower relative entropy values denote homo-
geneous values and lower information content. One impli-
cation of low entropy values is that the search has reached
a local optimum. Higher entropy values signify that more
diverse trees are found by a phylogenetic heuristic, which
lessen its probability of being trapped in local optima.

For 174 and 500 taxa datasets, Pauprat has a higher rela-
tive entropy than Rec-I-DCM3 when comparing parsimony
scores and RF distances. That is, Pauprat trees are more di-
verse than Rec-I-DCM3 trees. For the 60 taxa curves, Rec-
I-DCM3 has a much higher relative entropy than Pauprat.
Moreover, for Rec-I-DCM3, parsimony score entropy val-
ues are much higher than RF rate values for 60 taxa. Such a
result implies that the parsimony scores of trees are more
diverse than their topologies. In other words, trees with
different scores when compared topologically are similar.
For Pauprat, the relative entropy values vary quite a bit
more than for Rec-I-DCM3, which has relative entropy val-
ues that are fairly constant across iterations. Essentially
such behavior denotes that the Rec-I-DCM3 search has con-
verged as there is not much change in the parsimony or RF
rates among the trees found.
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Figure 3. Relative entropy values obtained
from Pauprat trees every 100 iterations.

6 Conclusions

In this paper, we use novel approaches for compar-
ing the phylogenetic trees obtained from two well-known
maximum parsimony (MP) heuristics—Pauprat and Rec-I-
DCM3. Our results show that although Pauprat is a slower
algorithm than Rec-I-DCM3, it is a useful approach to use
when reconstructing MP trees. The value of slower al-
gorithms come from finding good-scoring trees that are
sufficiently different from their faster counterparts. In
essence, the heuristics are finding different classes of trees,
which may have different implications about evolution. Of
course, in the real-world, speed does matter. As dataset
sizes continue to increase, the performance of phylogenetic
heuristics must increase as well to keep up with the ever-
increasing size of molecular datasets. If the trees found
by the slower heuristic finds are good ones, then it may be
worth the effort to spend time improving the implementa-
tion to make it more competitive in terms of speed.

It is not unusual for phylogenetic heuristics to find hun-
dreds to thousands of best-scoring trees. In some sense
this could imply that parsimony scores alone are not fine-
grained enough to distinguish between the different topolo-
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Figure 4. Relative entropy values obtained
from Rec-I-DCM3 trees every 100 iterations.

gies of the trees. By using relative entropy, our results show
that for trees obtained from our larger datasets, there is more
information content in topological distance measures (such
as the Robinson-Foulds distance) than in parsimony scores.
Hence, heuristics could benefit from actively using topo-
logical distance (in addition to parsimony scores) to guide
their search through tree space. Our entropy plots also show
that Pauprat trees are more diverse than their Rec-I-DCM3
counterparts. Thus, Pauprat appears less likely than Rec-I-
DCM3 to get stuck in local optima.

In the future, we plan to develop more measures of com-
paring heuristics by the collection of trees they find. Of
particular interest is developing new heuristics that incor-
porate topological distance measures as part of the search.
Furthermore, we plan to apply our approach for comparing
tree collections to other types of heuristics such as maxi-
mum likelihood techniques.
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